
Технические науки

ТЕХНИЧЕСКИЕ НАУКИ

Дударев Олег Кимович

старший преподаватель

 ФГБОУ ВО «Сибирский государственный аэрокосмический

университет имени академика М.Ф. Решетнева»

г. Красноярск, Красноярский край

НЕЧЕТКАЯ ОЦЕНКА ЗНАНИЙ В ТЕСТИРОВАНИИ

Аннотация: в статье рассматриваются актуальные проблемы тестиро-

вания, описываются недостатки существующих систем тестирования. Авто-

ром предлагается подход, основанный на нечеткой оценке правильности отве-

тов в тестировании с результатом в виде процента правильности.

Ключевые слова: оценка знаний, тестирование, сравнение строк, алго-

ритмы нечеткого сравнения строк.

Важным элементом в обучении является контроль знаний и умений учаще-

гося. При этом эффективность всей учебной работы во многом зависит от его

организации и нацеленности. В последние годы тесты знаний и способностей по-

лучили широкое распространение в различных областях общественно‐экономи-

ческой жизни. В связи с широким распространением web‐технологий появляется

все больше систем с широкими возможностями по автоматизации процесса обу-

чения и контроля качества знаний и умений. Наиболее распространенные

OpenSource системы: ATutor, Claroline, Dokeos, LAMS, Moodle, OLAT, OpenACS

и Sakai. Каждая из них имеет свои достоинства и недостатки, однако наибольшее

распространение получила система LMS Moodle. К недостаткам тестирования с

вводом ответа системы LMS Moodle можно отнести:

 нет возможности учесть возможные опечатки в ответе;

 частично правильные ответы так же задаются в явном виде либо с помо-

щью управляющих символов;

 нет возможности генерации новых вопросов из уже добавленных.

https://creativecommons.org/licenses/by/4.0/

Центр научного сотрудничества «Интерактив плюс»

 Образование и наука в современных условиях

Большинство недостатков, связанных с анализом правильных ответов

можно решить при помощи нечеткой оценки, где нет как такового правильного

или не правильного ответа, а все ответы имеют некоторую количественную

оценку. При этом ответы можно сравнивать при помощи различных алгоритмов

нечеткого сравнения строк и получать количественную оценку схожести отве-

тов, выраженную в процентах. Наиболее распространенные алгоритмы сравне-

ния строк используют расстояния Хэмминга, Левенштейна, Джаро и др.

При оценке результатов тестирования возникает необходимость сравнивать

правильный ответ с ответом, который ввел пользователь. При этом недостаточно

просто сравнить ответы посимвольно, так как при этом опечатка в одном сим-

воле может быть засчитана как неверный ответ. Для сравнения ответов нужно

использовать алгоритмы, позволяющие количественно оценить похожесть двух

строк, при этом возникает необходимость вычисления расстояний между срав-

ниваемыми строками.

Для сравнения строк обычно используют метрики, оценивающие минималь-

ное количество действий (операция редактирования), необходимых для преобра-

зования одной строки в другую. К элементарным операциям редактирования от-

носятся операции замены, вставки и удаления символа, последние две из кото-

рых иногда объединяют в одну.

Существует множество различных подходов к выбору функции похожести

строк. Одной из классических мер является расстояние Левенштейна. Функция

Левенштейна – это мера разницы двух последовательностей символов относи-

тельно минимального числа элементарных операций редактирования, необходи-

мых для перевода одной строки в другую в случае, когда операции имеют оди-

наковый вес.

Вычислив расстояние Левенштейна, можно найти процент совпадения

строк по следующей формуле:

,

Технические науки

где percent_of_simil – процент совпадения; max_len – длина наибольшей строки;

d – расстояние Левенштейна.

Другим подходом является алгоритм нечеткого сравнения строк. Он исполь-

зует в качестве аргументов две строки и параметр сравнения – максимальную

длину сравниваемых подстрок. Результатом работы алгоритма является число,

лежащее в пределах от 0 до 1.0 соответствует полному несовпадению двух строк,

а 1 – полной (в определённом ниже смысле) их идентичности.

Сравнение строк происходит по следующей схеме. Пусть, например, в каче-

стве аргументов заданы две строки «test» и «text» и некоторая максимальная

длина подстрок, скажем, 4. Функция сравнения составляет все возможные ком-

бинации подстрок с длинной вплоть до указанной и подсчитывает их совпадения

в двух сравниваемых строках. Количество совпадений, разделённое на число ва-

риантов, объявляется коэффициентом схожести строк и выдаётся в качестве ре-

зультата работы алгоритма.

Расстояние Джаро – расстояние, вычисляемое для двух строк, равное:

,

где m – число схожих символов, t – число транспозиций – количество схожих, но

отличающихся позицией в строке символов, деленное на 2.

Два символа являются схожими, если находятся друг от друга на расстоянии

не более

.

Данная метрика позволяет сравнивать строки различной длины, а также

учитывать перестановки в строках.

Особый интерес представляет функция similar_text из стандартной библио-

теки языка программирования php, который широко используется в web‐про-

граммировании и написании online‐тестов. Функция вычисляет степень похоже-

сти двух строк по алгоритму, описанному Oliver [1993]. Эта реализация

Центр научного сотрудничества «Интерактив плюс»

 Образование и наука в современных условиях

алгоритма не использует стека, использованного в оригинале, вместо этого при-

меняются рекурсивные вызовы, что в некоторых случаях может ускорить про-

цесс. Сложность алгоритма составляет O(N**3), где N – длина более длинной из

двух строк, что делает ее гораздо медленнее функции Левенштейна.

Было проведено сравнение алгоритмов с учетом распространенных ошибок

при вводе текста: перестановка символов, неверный ввод символа, пропуск сим-

вола, ввод лишнего символа, ошибка регистра символов.

Рис. 1. Пример сравнения работы функции similar_text и levenshtein

при перестановке символов

Выводы: Функция Левенштейна является одной из самых мощных функций

для сравнения строк, в зависимости от реализуемой задачи, функция позволяет

задавать стоимость вставки символа, стоимость удаления, а также стоимость за-

мены, при этом есть возможность задать функцию вычисляющую сложность

трансформации. Все эти настройки позволяют применять функцию при решении

множества задач. К примеру, если в задаче важно, чтобы длины строк совпадали,

иначе решение будет сильно отличаться от верного, можно задать высокую сто-

имость вставки, при этом процент совпадения таких строк будет гораздо ниже.

При всей своей мощности функция довольно быстрая, сложность алгоритма этой

функции равна O(m*n), т.е. пропорциональна произведению длин строк str1 и

str2, поэтому эта функция намного более быстрая, чем функция similar_text,

Технические науки

сложность алгоритма которой составляет O(N**3), где N – длина более длинной

из двух строк. Однако в некоторых случаях, все же лучше использовать функцию

similar_text, это касается, прежде всего, коротких строк, так как при использова-

нии функции Левенштейна при транспозиции получаются довольно большие

расстояния. Например, при использовании функции Левенштейна строки «при-

вет» и «рпивет» будут схожи всего на 66,66%, в то время как функция similar_text

даст 83,33%. Так же зависимость положения транспозиции может быть не важна

в некоторых задачах. Например, если последовательность 123456789 является

единственно верной, то совершенно неважно, где были допущены ошибки, од-

нако функция Левенштейна даст различные проценты совпадения для последо-

вательностей 214356789(66,67%) и 213456798(55,56%), хотя в обоих случаях

было сделано 2 перестановки. В этих случаях можно использовать расстояние

Дамерау‐Левенштейна, в котором добавлена операция транспозиции или функ-

цию similar_text. Но если нет одной единственно верной последовательность, и

ее нужно выбрать из набора наиболее подходящих, как это сделано в MS Word

при проверке правописания, то расстояние Левенштейна может дать этот необ-

ходимый набор последовательностей. В остальном эти функции схожи, за ис-

ключением линейности функции Левенштейна при пропуске символов, в отли-

чие от функции similar_text, которая с увеличением количества пропущенных

символов дает меньший процент совпадения строк в переводе на один символ.

Если рассматривать задачу с точки зрения положения ошибки в строке, сле-

дует рассмотреть расстояние Джаро и Алгоритм нечеткого сравнения строк, ко-

торые даже для одной ошибки дают различные результаты в зависимости от ее

положения, что не наблюдается у рассмотренных ранее функций. Алгоритм не-

четкого поиска все время дает больший результат при приближении ошибки к

началу и концу строки, следовательно, можно сделать вывод, что этот алгоритм

хорошо подходит для сравнения строк, в которых наиболее важно совпадение в

середине строки. Например, это может быть задание на установление правиль-

ной последовательность дат, в котором, как правило, начальное и конечное со-

бытие установить довольно просто. Интересной особенностью расстояния

Центр научного сотрудничества «Интерактив плюс»

 Образование и наука в современных условиях

Джаро является его поведение при пропуске или вводе лишнего символа в

строке. Чем дальше от начала строки расположена ошибка такого рода, тем

больше процент совпадения таких строк, следовательно, можно сделать вывод,

что алгоритм хорошо подходит для сравнения строк, в которых наиболее важно

совпадение в начале строки. Для строк небольшой длины желательно использо-

вать расстояние Джаро‐Винклера, в котором используется масштабный коэффи-

циент.

Результатом проделанной работы стала уникальная система web‐тестирова-

ния, реализующая поставленные задачи по анализу результатов с помощью

функций нечеткой оценки, с возможностью выбора алгоритма сравнения строк

для каждого теста. Таким образом, можно задать различную степень строгости

сравнения вводимых ответов с эталоном, в зависимости от целей тестирования.

Список литературы

1. Navarro G. A Guided Tour to Approximate String Matching. ACM Computing

Surveys. – 2001. – V. 33(1). – Р. 31–88.

2. Андреев А.В. Практика электронного обучения с использованием

Moodle / А.В. Андреев, С.В. Андреева, И.Б. Доценко. – Таганрог: Изд‐во, ТТИ

ЮФУ, 2008. – 146 с.

3. Ахмедова Е.В., Филиппова О.В. Методические аспекты тестирования как

одной из форм контроля при обучении // Информационный портал ИГХТУ, 2007.

4. Бойцов Л.М. Классификация и экспериментальное исследование совре-

менных алгоритмов нечеткого словарного поиска // Труды Всероссийской кон-

ференции RCDL'2004.

