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МЕТОДЫ МИНИМИЗАЦИИ ЭНЕРГОПОТРЕБЛЕНИЯ КМОП ИС 

Аннотация: в последнее время в современном мире микроэлектроники про-

слеживаются две ключевые тенденции: увеличение быстродействия и сниже-

ние энергопотребления. Создание электронных устройств с большей вычисли-

тельной мощностью и малым энергопотреблением, позволяет нам использо-

вать более компактные приборы, работающие на аккумуляторах или батареях. 

Тенденция разработки новых приложений, программ и ПО неуклонно растет, 

тем самым удовлетворяя желания потребителей, а между тем различные ин-

новации и нововведения требуют все больше энергии, тем самым уменьшая 

время работы портативных устройств. Как пример мы можем сравнить время 

работы мобильного телефона в 2000 году и 2014 годы, или же время работы 

современных смартфонов на различных операционных системах. Развитие ста-

рых, и разработка новых методов снижения энергопотребления, актуальные 

темы для исследования в мире микроэлектроники, поскольку чем энергоэконо-

мичнее будут современные приборы, тем дольше и быстрее они смогут рабо-

тать. 

Ключевые слова: уменьшение энергопотребления, КМОП структура, 

FinFET технология, VTCMOS технология. 
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На данный момент не найдено универсальное решение, которое решило бы 

данную проблему во всех возможных ситуациях. По этой причине нужно учиты-

вать особенности проектируемых устройств, такие как быстродействие, надеж-

ность, затраты на создание и т.п. 

Рассмотрим основные методы, которые могут использоваться комплексно 

или в отдельности для минимизации энергопотребления при проектировании 

КМОП ИС. 

 

Рис. 1. Классификация методов минимизации энергопотребления при проекти-

ровании КМОП ИС 

 

На рисунке 1 представлена обобщенная классификация основных использу-

емых методов минимизации энергопотребления. При традиционных КМОП‐тех-

нологиях (минимальные размеры элементов не переходят в субмикронную об-
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ласть) основную долю рассеиваемой мощности составляет динамическая мощ-

ность. Снижение любого параметра: напряжения питания, напряжения переклю-

чения, перезаряжаемой емкости или частоты переключения‐ приводит к умень-

шению величины рассеиваемой мощности. 

Обычно наибольшее внимание инженеров направлено на уменьшение вели-

чины напряжения питания. Это связано с тем, что для большинства КМОП ИС 

напряжение питание равно напряжению переключения. Между динамической 

рассеиваемой мощностью и напряжением питания ИС существует квадратичная 

зависимость. Помимо этого, при уменьшении напряжения питания одновре-

менно уменьшается и статическая мощность. 

При анализе энергопотребления КМОП ИС выделяют две основные со-стов-

ляющие энергопотребления: статическая и динамическая. Статическая составля-

ющая включает в себя следующие различные компоненты: токи, связанные с 

туннелированием, токи утечек через p‐n переходы, подпороговые токи утечки. К 

динамической составляющей относятся следующие эффекты: перезарядка емко-

стей схемы и сквозные токи в процессе переключения узлов схемы. Общее по-

требление КМОП ИС можно представить в виде следующего выражения: 

P = CL∙Vdd
2∙αT∙f +Vdd∙Isc+Vdd∙Ileak (1) 

где P – общая потребляемая мощность, CL – нагрузочная емкость, Vdd – 

напряжение итания, αT – активность переключений, f ‐‐ тактовая частота, Isc – 

сквозной ток, Ileak – суммарный ток утечки. 

Следующим фактором, влияющим на величину динамической мощности, 

является частота переключения, поэтому ее снижение также будет приводить к 

снижению рассеиваемой мощности. Однако при этом возникает конфликт с тре-

бованиями, касающимися производительности. Для устранения этого конфликта 

можно использовать различные подходы. Во‐первых, при проектировании но-

вых устройств приоритет должен отдаваться решениям с пониженными требова-

ниями к рабочей частоте функциональных компонентов. Во‐вторых, для сниже-

ния тактовой частоты необходимо применять методы параллельного выполне-

ния операций на конвейере. В‐третьих, целесообразно использовать различные 
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схемы запрета синхронизации как для неиспользуемых функциональных моду-

лей, так и для модулей или компонентов, информация в которых не изменяется 

в данный момент. Например, при проведении целочисленных вычислений 

обычно не используются узлы сопроцессора, которые предназначены для вычис-

лений с плавающей запятой, поэтому на эти узлы в данный момент импульсы 

синхронизации поступать не должны. 

Снижение энергопотребления на технологическом уровне 

В современных технологиях, начиная с уровня 0,18 мкм КМОП, имеется 

возможность изготовления МОП‐транзистора с двумя значениями порогового 

напряжения, что обеспечивает совместимость с методом множественных поро-

говых напряжений на функционально‐логическом уровне. 

В настоящее время все более широко применяется технология Silicon‐

oninsulator (SOI). Структура МОП‐транзистора, изготовленного по технологии 

SOI приведена на рисунке 2. 

 

Рис. 2. Структура КМОП SOI: а) схематическое изображение структуры транзи-

стора; б) полученный с помощью сканирующего электронного микроскопа вид 

поперечного сечения. 
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За счет уменьшения емкостей SOI МОП‐транзистора удается уменьшить по-

требляемую мощность, задержки и занимаемую площадь. При переходе к нано-

размерным топологическим нормам также успешно используются технологии на 

объемном кремнии и SOI. Особый интерес представляет разновидность транзи-

стора с двойным затвором – FinFET транзистора. В этом приборе тонкая крем-

ниевая структура (столбик, вставка – fin) «обернуто» затвором. Выступающая 

передняя область тела – исток транзистора, выступающая задняя область – сток. 

Ток протекает в плоскости, параллельной плоскости структуры. Активная ши-

рина прибора равна высоте столбика, и ее можно увеличивать путем параллель-

ного включения многих столбиков. По своей топологии FinFET не отличается от 

традиционного МОП‐ транзистора, за исключением того, что активная область 

формируется вставками, а не представляет собой плоский прямоугольник. По-

явилась структура трехзатворного FinFET (рисунок 3). 
 

 

Рис. 3. Структура FinFET: а) структура FinFET б) FinFet SRAM 
 

При переходе к 45нм топологическим нормам для создания затворов тран-

зисторов с малыми токами утечек использован новый материал для диэлектрика 

– так называемый high‐k диэлектрик, в сочетании с новым материалом для элек-

трода затвора транзистора на основе металлов. 
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Рассмотрим влияние различных технологических базисов на величину энер-

гопотребления, разработанного 5‐ти разрядного таймера. Для сравнения вы-

браны технологии HCMOS‐0.18um, CMOS‐0.35um и AMS‐0.6um. Результаты 

представлены в таблице 1. 

Таблица 1 

Результаты расчета мощности таймера в различных тех. базисах 
 

Технология HCMOS 0.18 
(Vdd=2 v; L=0.18u ) 

CMOS 0,35u( Vdd=3.5В; 
Wn=0.8u; Wp=3.2u;Cn=3p; 
Vtn=0.6, Vtp=-0.6 Kn=200 Kp= 
52 Tox=7) 

AMS 0.6 (Vdd=5; 
Vtn=0,8; Vtp=-0,9; 
Kn=140; Kp=42; 
Wn=0.9; Wp=3 ) 

Pinv, Вт 3,40E-07 4,23E-06 9,18E-06 
P2and,.Вт 4,64E-07 5,07E-06 1,13E-05 
P3and,Вт 5,90E-07 5,92E-06 1,34E-05 
Pdevice,Вт 9,71E-04 3,56E-03 7,41E-03 

 

Снижение энергопотребления на схемотехническом уровне 

На схемотехническом уровне можно выделить несколько вариантов постро-

ения энергоэффективных решений: статическая КМОП логика, динамическая 

логика, логика на проходных транзисторах, адиабатическая логика, псевдо n‐

МОП логика, схемы с переменным пороговым напряжением, схемы с дополни-

тельным источником питания, использование управления по дополнительным 

затворам. 
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Рис. 4. Схемотехнические решения основных элементов: а) КМОП‐инвертор; б) 

Проходной вентиль; в) Динамическая логика. 
 

Одинаково эффективного и универсального для всех приложений LP схемо-

технического базиса в настоящее время не существует. Статическая КМОП‐ло-

гика и логика на проходных транзисторах эффективны при построении комбина-

ционных схем. Динамическая логика нашла применение при построении микро-

процессоров. 

Использование элементов с изменяемым пороговым напряжением 

(VTCMOS) Технология VTCMOS используется в устройствах с низким порого-

вым напряжением. Используя эффект влияния подложки можно контролировать 

пороговое напряжение, что позволяет получить высокое VTH в режиме ожида-

ния и низкое VTH в активном режиме для одного и того же транзистора. На рис. 5 

приведена модификация электрической схемы КМОП‐ инвертора с применением 

технологии VTCMOS. Во время активного режима на подложку p‐канального 

транзистора подается напряжение VDD, а на подложку n‐канального транзи-

стора – 0V, обеспечивая низкое эффективное пороговое напряжение, и, следова-

тельно, высокое быстродействие. Во время режима ожидания на подложку p‐ и 
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n‐канальных транзисторов подается напряжение 2VDD и ‐VDD соответственно, 

эффективное пороговое напряжение увеличивается, уменьшая тем самым ток 

утечки. К недостаткам этой технологии можно отнести дополнительную схему 

управления смещением подложки. 

Рис. 5. Технология VTCMOS 

Чтобы оценить насколько возможно снижение энергопотребления, мы рас-

смотрим четыре стандартных элемента: Инвертор (INV), 2И‐НЕ (NAND2) и 3И‐

НЕ (NAND3). В результате моделирования этих элементов были получены зави-

симости задержки и энергопотребления от напряжения питания (Таблица 2). 
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Таблица 2 

Зависимость энергопотребления от напряжения 
 

 

Снижение напряжения питания приводит к снижению энергопотребления 

элементов. Так для инвертора (INV) при снижении напряжения питания от 2 В 

до 1.2 В, энергопотребление снижается на 35.8%, для 2И‐НЕ (NAND2) – 35.9% и 

для 3И‐НЕ(NAND3) ‐35.9 %. Таким образом среднее снижение энергопотребле-

ния всех элементов составляет 35.9%, и уменьшение быстродействия на 30%. 
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Vdd, B 2 B 1.6 B 1.2 B 
 td, пс P, мкВт td, пс P, мкВт td, пс P, мкВт 

INV 64 0.34 73 0.217 84.5 0.122 
NAND2 65.5 0.464 78 0.296 89 0.167 
NAND3 71.8 0.59 80 0.377 95 0.212 

 


