ТЕХНИЧЕСКИЕ НАУКИ

Стариков Альберт Николаевич

канд. техн. наук, доцент

ФГБОУ ВПО «Владимирский государственный

университет им. А.Г. и Н.Г. Столетовых»

г. Владимир, Владимирская область

Карцева Елена Владимировна

заведующая группой

ООО «Ивпроммонтажэкспертиза»

г. Иваново, Ивановская область

Брыль Ирина Борисовна

эксперт

ООО «Ивпроммонтажэкспертиза»

г. Иваново, Ивановская область

Иринин Алексей Алексеевич

инженер

ФГБОУ ВПО «Владимирский государственный

университет им. А.Г. и Н.Г. Столетовых»

г. Владимир, Владимирская область

МЕТОДЫ ОЦЕНКИ ЭФФЕКТИВНОСТИ ФУНКЦИОНИРОВАНИЯ ГАЗОВОГО ВОДОГРЕЙНОГО КОТЛА

Аннотация: в данной статье авторами приводится сравнительная оценка погрешностей при определении КПД газового водогрейного котла при прямом методе и методе обратного баланса. Производится анализ случайных и систематических погрешностей, а также возможных методических погрешностях.

Ключевые слова: КПД, котел, энергоэффективность, тепловая энергия, тепловой баланс, погрешности, измерительные приборы, расход газа.

Потребление топлива, и углеводородов в частности, растёт с каждым годом. Современная промышленность и социальный сектор являются основными его потребителями. Одним из элементов повышения эффективности использования газа является разработка и применение методов контроля и учёта его использования. Таким образом, решение вопроса повышения точности определения эффективности функционирования газового котла есть актуальная задача энергетики.

Существующий метод по оценке эффективности котла (прямой метод), применяемый на практике в соответствии с руководящей документацией, наряду с предлагаемым методом (метод обратного баланса) являются предметом исследования. Объект исследования: котёл Турботерм 1600. Целью данной работы является определение точности определения КПД при применении различных методов оценки эффективности котла. Для достижения поставленной цели решаются следующие задачи: анализ существующих методов по определению эффективности работы котлового оборудования; проведение натурного эксперимента на работающем оборудовании, в штатном режиме; обработка данных методами математической статистики; сравнение и анализ результатов; разработка рекомендаций по внедрению предлагаемого метода.

Предлагаемый «метод обратного баланса» имеет определенное преимущество перед применяемым на практике «прямым методом» ввиду повышения точности его результата. Кроме того, обладает относительной простотой и несомненной наглядностью. Кроме того, появляется возможность оперативно исследовать влияние различных факторов, связанных с системой подготовки и использования топлива, на показателе эффективности работы теплогенерирующей системы (котла).

Предложенный алгоритм удобен для сотрудников проектных, наладочных и эксплуатирующих организаций, которые получают инструмент для проверки качества применения различных вариантов технических решений, связанных с

теплогенерацией. Материал статьи будет также полезен преподавателям и студентам высших технических учебных заведений при изучении разделов специальных дисциплин, связанных с эксплуатацией теплогенерирующих установок.

Коэффициент полезного действия один из важнейших параметров котла. По нему судят об энергоэффективности, по нему рассчитывают удельные нормы и в конечном счете от него зависит тариф не тепловую энергию.

Основной энергетической характеристикой водогрейного котла является коэффициент полезного действия (КПД). По нему судят об энергоэффективности, рассчитывают удельные нормы потребления газа и в конечном счете от него зависит тариф не тепловую энергию.

Между наладочными и эксплуатирующими организациями существует много споров, почему при проведении режимно-наладочных испытаний получаются одни величины, а при эксплуатации другие. Причин здесь может быть масса: организационные, технические, законодательные, субъективные, и др.

На производстве, в котельной обычно пользуются прямым методом с использованием приборов учета тепла и расхода газа. При проведении режимноналадочных работ пользуются методом обратного баланса с использованием газоанализаторов. Законодательно применение обоих методов допустимо.

Как правильно измерить составляющие величины и каким методом рассчитать?

Таким образом, встаёт задача по определению количественных характеристик обоих методов с целью получения аргументации в пользу применения одного из них.

Сравним эти два метода. Попытаемся, на сколько это возможно определить численно кокой метод точнее.

Результат всякого измерения всегда содержит некоторую погрешность. Поэтому в задачу измерений входит не только нахождение самой величины, но также и оценка, допущенной при измерении погрешности. Применительно к котлу, полезной энергией служит тепловая энергия, выработанная котлом, Q_{κ} ; затраченная энергия — теплота сгоревшего топлива, Q_{ε} . Тогда коэффициент полезного действия котла определяется выражением (1):

$$\eta_{\scriptscriptstyle \mathrm{K}} = \frac{Q_{\scriptscriptstyle \mathrm{K}}}{Q_{\scriptscriptstyle \mathrm{H}}^{\,\mathrm{p}}},$$

где η_{κ} – КПД котла;

 Q_{κ} – полезная энергия, переданная теплоносителю;

 Q_{Γ} – тепловая энергия, выделенная в результате химической реакции горения (определяется теплотворной способностью газа), $Q_{\Gamma} = Q_{\rm H}^{\rm p} \cdot B_{\Gamma}$;

 $B_{\rm r}$ – полезная энергия, переданная теплоносителю.

Данный метод принято назвать прямым методом определения КПД котла.

Существует *обратный метод* определения КПД котла, в котором определяются составляющие потерь тепла [4, с. 20]. В (2) и (3) представлен энергетический баланс колоагрегата.

$$Q_{\Gamma} = Q_1 + Q_2 + Q_3 + Q_4 + Q_5$$
$$\eta_{\kappa} = 100\% - q_2 + q_3 + q_4 + q_5$$

где Q_I – то же, что и Q_{κ} в (1);

 q_2 – потери тепла с уходящими газами, %;

 q_3 – потери тепла химическим недожогом, %;

 q_4 – потери тепла с механическим недожёгом, %;

 q_5 – потери тепла от поверхности котла, %.

Величина Q_1 — есть полезная составляющая работы котла, а составляющие Q_2 , Q_3 , Q_4 , Q_5 , — неизбежные потери при функционировании агрегата. Каждый вид потерь определяется или рассчитывается по данным опытов, проводимых в определённых режимах

Проведем эксперимент на котле и рассчитаем КПД по прямому методу и методу обратного баланса. Затем определим точность и погрешность обоих методов.

Для сравнения точности обоих методов был проведён натурный эксперимент.

Работы проводились на котле Турботерм-1600. В табл. 1 приведены основные характеристики установки [9, с. 8].

Как правило КПД котла определяется в ходе проведения режимно-наладочных испытаниях и на устоявшемся режиме работы проводят одно измерение. В данной работе для повышения точности, независимости и объективности результата было проведено 10 измерений параметров работы с интервалом 5 минут. Это позволило:

- убедиться в стабильности работы котлоагрегата;
- определить разброс параметров;
- убедиться в отсутствии грубых промахов при замерах.

Таблица 1 Технические характеристики котла

	Наименование параметра	Обозначение	Ед. измерения	Величина
1	Номинальная теплопроизводительность	Q_{κ}	Гкал/ч	1,38
2	Предельное отклонение от номинальной производительности	$arDelta Q_{ ext{ iny K}}$	%	7
3	КПД (газ) не менее	$\eta_{\scriptscriptstyle ext{K}}$	%	92
4	Тепловыделения от котла (Q ₅)	\overline{Q}_4	ккал/ч	5522

Исходя из приведенных данных абсолютное отклонение от номинальной производительности составляет $\Delta Q_{\kappa} = 7,6$ кВт и потери тепла от котла в окружающую среду на номинальной нагрузке $Q_5 = 0,37\%$ [9, с. 8]. Соответственно относительная погрешность потерь от поверхности котла составляет $\Delta Q_{5\text{ном.}} = 0,026\%$ или 7%.

Испытания проводились, на природном газе ГОСТ 5542-87 с теплотворной способностью $Q_2 = 8100$ ккал/м³ [3, c. 1].

Величина низшей теплотворной способности Q_{H}^{p} взята из паспорта на топливо, предоставляемого теплоснабжающей организацией.

Определение параметров работы котла проводилась штатными приборами, установленными для эксплуатации котла, т.е. по II классу точности [10, с. 148]. Для определения состава и температуры уходящих газов была определена точка для отбора проб методом, описанным в [10, с. 173]. Принципиальная схема установки и места расположения измерительного оборудования представлена на рис. 1, наименование приборов, табл. 2.

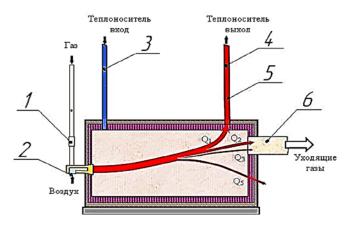


Рис.1. Схема расположения приборов на котле

Таблица 2 Результаты замеров

точка замера		при-	Ед.				Но	м знач.	откл.	І.ИЗМ.	шн. Дх						
				1	2	3	4	5	6	7	8	9	10	Среднее арифм знач	Среднекв с	Абс. погреш.изм.	Сумм. Погрешн.
1	Расход газа	СГ16М Т-250- 40 Корр ЕК260	м ³ /ч	70	75	71	73	74	73	75	76	77	77	74,1	1,68	2,22	2,78
2	Температ ура дутьевог о воздуха	2000	°C	20	21	22	23	23	22	23	24	24	24	22,6	0,95	1,00	1,38
3	Темпера- тура воды на вх. в ко- тел	Взлет ТСР-М	°C	70	71	70	71	71	71	69	70	69	70	70,2	0,54	1,00	1,14

Образование и наука в современных условиях

4	Темпера- тура воды на вых из котла	Взлет ТСР-М	°C	90	92	90	89	90	89	90	91	91	90	90,2	0,65	1,00	1,19
5	Расход воды через котел	Взлет ТСР-М	т/ч	20	22	19	22	24	20	19	19	20	20	20,5	1,16	0,62	1,32
6	Температура ухо- дящих газов	Delta 2000	°C	205	204	199	197	197	201	202	203	204	205	201,7	2,18	1,00	2,40
6	Содержание кислорода в ух. газах	Delta 2000	%	3.8	3,8	3,9	3,8	3,7	3,8	4	3,9	3,9	3,8	3,86	0,07	0,20	0,21
6	Содержание СО в ух. газах		ppm	40	45	40	41	46	50	55	52	48	48	46,5	3,61	2,33	4,30

В таблице 2 приведены данные, которые непосредственно участвуют в определении КПД котла.

Для оценки случайных погрешностей величин была принята интервальная оценка, основанная на определении некоторого интервала, внутри которого с определенной вероятностью находится неизвестное значение параметра.

Считается, что измеряемые величины имеют нормальный закон распределения (Гаусса).

Число измерений мало поэтому был использован вероятностный закон распределения Госсета-Стьюдента [6].

Для нахождения доверительного интервала, накрывающего математическое ожидание, найдем по таблице квантилей распределение Стьюдента по заданной доверительной вероятности $\alpha = 0.95$ и числу степеней свободы n = 10, $t_{\alpha n} = 2.3$ [3, с. 107], – формулы (4), (5), (6).

$$X_{\rm cp} = \frac{1}{n} \sum_{i=1}^{n} X_{\rm cn} i$$

$$S_{cn} = \sqrt{\frac{1}{n(n-1)} \sum (X_{cp} - X_i)}$$

$$\Delta X_{c\pi} = S_{c\pi} t_{\alpha n}$$

где X_{cp} – среднее значение величины;

 S_{cn} – среднеквадратичное значение;

 ΔX_{cn} – приборная порешность.

Приборная $\Delta X_{приб}$ и случайная $\Delta X_{сл}$ являются совершенно независимыми, поэтому наиболее справедливо будет определять суммарная погрешность по формуле (4.4) (Тейлор [6, с. 62]).

Приборная погрешность $\Delta X_{приб}$ и случайная погрешность $\Delta X_{cл}$ являются совершенно независимыми, поэтому для получения суммарной погрешности была выбрана формула Тейлора, (7), [11, c. 62].

$$\Delta X = \sqrt{\Delta X_{\text{приб}} + \Delta X_{\text{сл}}}$$

Результаты расчётов представлены в табл. 2

Расчёт тепловых потерь произведён по упрощенной методике профессора М.Б. Равича [7, с. 50]. Величины Q_{κ} , q_2 , q_3 , q_5 , η_{κ} определяются не напрямую, а с помощью косвенно измеряемых величин по известным зависимостям.

Максимальную погрешность искомых величин исходя из общей формулы [6, с. 184], имеет вид (8)

$$\Delta Q = \left| \frac{dQ}{dx_1} \right| \Delta x_1 + \left| \frac{dQ}{dx_2} \right| \Delta x_2 + \dots + \left| \frac{dQ}{dx_n} \right| \Delta x_n$$

Теплопроизводительность котла Q_{κ} на номинальной нагрузке и абсолютная погрешность ΔQ_{κ} к представлены в (9) и (10):

$$Q_{\mathrm{K}} = CG(t_2 - t_1),$$

$$Q_{\mathrm{K}} = 10^{-6} \cdot 35,0 \cdot 10^3 (107,4 - 70,1) = 1,31 \, \Gamma \mathrm{кал/ч};$$

$$\Delta Q_{\mathrm{K}} = \left((\Delta t_1 + \Delta t_2)G + (t_2 - t_1)G \right)C = \left((1,1 + 1,1)35 + (107,4 - 70,1)1,5 \right)10^{-6}$$
 (10)
$$\Delta Q_{\mathrm{K}} = 0.13 \, \Gamma \mathrm{Kan/ч}.$$

где С – удельная теплоёмкость теплоносителя (воды),

G – количество теплоносителя, $M^3/4$, табл. 2;

 t_1 – температура теплоносителя на входе в котёл, °С, табл. 2;

 t_2 – температура теплоносителя на выходе из котла, °C, табл. 2;

Определим КПД котла по прямому балансу. Из формулы (1) имеем

Определение КПД котла по прямому балансу

Из формулы (1) имеем:

$$\eta_{\rm K} = \frac{Q_{\rm K}}{Q_{\rm H}^{\rm p} \cdot B_{\rm F}} = \frac{1,31 \cdot 10^6}{190,9 \cdot 8100} = 84,7 \%,$$

где $Q^{\frac{p}{h}}$ – низшая теплотворная способность топлива, ккал/м³;

 B_{Γ} – расход газа, м³/ч;

 Q_{κ} – теплопроизводительность котла, Гкал/ч.

Из формул (1) и (11) имеется возможность определить абсолютную погрешность результата:

$$\begin{split} \Delta\eta_\kappa &= \left(\frac{\Delta Q_\kappa}{Q_H^p \cdot B_\Gamma} + \frac{Q_\kappa \left(\Delta Q_H^p \cdot B_\Gamma + Q_H^p \Delta B_\Gamma\right)}{(Q_H^p \cdot B_\Gamma)^2}\right) \cdot 10^6, \\ \Delta\eta_\kappa &= \left(\frac{0.13}{190.9 \cdot 8100} + \frac{1.3(81 \cdot 190.9 + 6.4 \cdot 8100)}{(190.9 \cdot 8100)^2}\right) \cdot 10^6 = 12.1\%. \end{split}$$

Определение КПД котла обратным методом

Потери тепла с уходящими газами:

$$q_2 = 0.01 \text{ z} (t_{yx} - t_{B}) = 0.01 \cdot 4.28(145.3 - 22.3) = 5.9\%,$$

$$\Delta q_2 = 0.01 (\Delta z (t_{yx} - t_{B}) + z (t_{yx} + t_{B}),$$

$$\Delta q_2 = 0.01(0.048(145.3 - 22.3) + 4.28(3.1 + 1.2) = 0.15\%,$$

где q_2 – потери тепла с уходящими газами, %;

 t_{yx} – температура уходящих газов, %;

t_в − температура дутьевого воздуха, °С

z – коэффициент, зависящий от температуры уходящих газов и степени их разбавления избыточным воздухом, [10, с. 56].

Потери тепла с химическим недожогом:

$$q_3 = (3\text{CO} + 2.5\text{H}_2 + 8.5\text{H}_4)\text{h} = 3 \cdot 113 \cdot 10^{-6} \cdot 1.22 = 0.0004 , \%,$$
 [10, 56]
$$\Delta q_3 = 3\text{CO} \cdot \Delta \text{h} + 3 \cdot \Delta \text{CO} \cdot \text{h} = 3 \cdot 113 \cdot 10^{-6} \cdot 1.22 = 6.4 \cdot 10^{-6} \%$$
 (14)
$$\text{h} = \frac{\text{CO}_{2 \text{ max}}}{\text{CO}_2 + \text{CO} + \text{CH}_4} = \frac{11.8}{9.7 + 113 \cdot 10^{-6}} = 1.22,$$

$$\Delta \text{h} = \frac{\Delta \text{CO}_{2 \text{ max}}}{\text{CO}_2 + \text{CO}} = \frac{\text{CO}_{2 \text{ max}}(\Delta \text{CO}_2 + \Delta \text{CO})}{(\text{CO}_2 + \text{CO})^2},$$

$$\Delta \text{h} = \frac{0.118}{9.7 + 113 \cdot 10^{-6}} + \frac{11.8(0.01 + 16.6 \cdot 10^{-6})}{(9.7 + 113 \cdot 10^{-6})^2} = 0.01,$$

где q_3 – потери тепла вследствие неполноты сгорания, %;

СО – содержание окиси углерода в уходящих газах, %;

 $CO_{2 \text{ max}}$ — максимальное содержание окиси углерода в уходящих газах (для природного газа — 11,8%);

h – коэффициент, зависящий от температуры уходящих газов и степени их разбавления избыточным воздухом, [7, с. 56].

При проведении эксперимента не учитывается присутствие метана и других углеводородов в уходящих газах ввиду того, что их доля мала.

Величина низшей теплотворной способности газа $Q_{\rm H}^{\rm p}$ взята из паспорта на топливо предоставляемой газоснабжающей организацией [7].

Если проаннотировать данные, то можно определить, что отклонения $Q_{\rm H}^{\rm p}$ в среднем составляют 3%, что подтверждается в литературе [2, с. 48]. Величина ${\rm CO_{2\,max}}$ определяется составом топлива [5, с. 56]. Состав топлива на момент эксперимента известен с неопределенной погрешностью поэтому зададимся ${\rm \Delta CO_{2\,max}}$ =3%. Так же может изменяться в ходе эксперимента. Величину ${\rm \Delta Z\, Gbina}$ принята 3%.

Потери тепла от поверхностей котла:

$$q_5 = q_{5\text{hom.}} \frac{Q_{\text{K}}}{Q_{\text{HoM}}} = 0.37 \frac{1.3}{1.38} = 0.3\%$$

$$\Delta q_5 = q_{5\text{hom.}} \left(\frac{Q_{\text{HoM}}}{Q_{\text{K}}} + \frac{Q_{\text{HoM}} \Delta Q_{\text{K}}}{Q_{\text{K}}^2} \right) + \frac{Q_{\text{HoM}}}{Q_{\text{K}}} \Delta q_{5\text{hom.}}$$

$$\Delta q_5 = 0.37 \left(\frac{1.38}{1.31} + \frac{1.38 \cdot 0.13}{1.31^2} \right) + \frac{1.38}{1.31} 0.026 = 0.07$$

где q_5 – потери тепла от поверхности котла на нагрузке;

 $q_{5\text{ном.}}$ – потери тепла от поверхности котла на номинальной нагрузке, %;

 Q_{κ} – производительность котла, Гкал/ч;

 $Q_{\text{ном}}$ – номинальная производительность котла, Гкал/ч.

Таким образом, для метода обратного баланса по формуле (2) имеем:

$$\eta_{\text{oбp}} = 100\% - q_2 - q_3 - q_5 = 100 - 5.9 - 0.3 = 93.8\%$$

$$\Delta \eta_{\text{oбp}} = \Delta q_2 - \Delta q_3 - \Delta q_5 = 0.15 + 0 + 0.07 = 0.22\%$$

В результате проведённых испытаний и обработки данных для прямого и обратного методов были получены следующие результаты:

$$\eta_{\text{np}} = 84,7 \pm 12,1\%, \qquad \eta_{\text{obp}} = 93,8 \pm 0,22\%.$$

Очевидно, что при данный результат имеет два существенных момента:

- обратный метод даёт существенно более высокий результат по величине эффективности работы кота;
 - точность у обратного метода на порядок выше.

Применение *прямого метода* связано с его простотой и сложившейся традицией в данном вопросе. Отношение прямых показателей приборов применимо в большинстве случаях и может носить приблизительный оценочный характер для определения эффективности работы котлоагрегата.

Применение же *обратного метода* даёт существенно более высокий показатель КПД, и в месте с тем точность результата на порядок лучше. При этом могут возникнуть сомнения в адекватности данного способа. Однако применение современной измерительной базы и инструментов позволяет с уверенностью принимать полученные результаты.

Следует так же отметить, что метод обратного баланса является незначительно, но всё же более трудоёмким и затратным методом, как по критерию инструментального парка, так и по квалификации сотрудников. Однако, без применении современных приборов учета расхода газа и тепловой энергии мы не можем получить более точных параметров мониторинга работы сложно энергетической системы, к которой безусловно можно отнести теплогенерирующую установку.

Список литературы

- 1. Взлет ТСР-М исполнения ТСР-024, -024М Руководство по эксплуатации теплосчетчик-регистратор.
- 2. Зайдель А.Н. Погрешности измерений физических величин. Л.: Наука, 1985.
- 3. Инструкция по эксплуатации Портативный газоанализатор Delta 2000CD-IV.
- 4. Кузнецова Н.В. Тепловой Расчет котельных агрегатов (нормативный метод) под редакцией. М.: Энергия, 1973.
- 5. Пеккер Я.Л. Теплотехнические расчеты по приведенным характеристикам (обобщенные методы) М.: Энергия, 1977.
 - 6. Рабинович С.Г. Погрешности измерений. Л.: Энергия 1978. 262 с.
- 7. Равич М.Б. Эффективность использования топлива. М.: Наука, 1977. 344 с.
- 8. Счетчик газа СГ16МТ, Руководство по эксплуатации ОАО Арзамасский Приборостроительный Завод.
- 9. Техническое описание и руководство по проектированию, монтажу и сервисному обслуживанию. Турботерм котлы водогрейные стальные жаротрубные мощностью 110-5000 кВт.
- 10. Трембовля В.И., Фингер Е.Д., Авдеева А.А. Теплотехнические испытания котельных установок. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1991. 416 с.
 - 11. Тэйлор Дж. Введение в теорию ошибок. М.: Мир, 1985.
- 12. 116-Ф3, «Технический регламент о безопасности сетей газораспределения и газопотребления».
- 13. ФНП «Правила безопасности сетей газораспределения и газопотребления»
- 14. СП 62.13330, Газораспределительные системы Актуализированная редакция СНиПа 42-01-2002.ф

15. СП 42-101-2003. Проектирование и строительство газопроводов из полиэтиленовых труб и реконструкция изношенных газопроводов.