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Проблема моделирования тепловых процессов в барьерном электрическом 

озонаторе (БЭО) является в настоящее время довольно актуальной. Несмотря на 

явные преимущества озонирования, данный способ отчистки воды и воздуха яв-

ляется одним из самых дорогостоящих. Это связно, в первую очередь, с несовер-

шенством конструкции БЭО. 

Средства математического моделирования позволяют сымитировать тепло-

вые процессы, происходящие в элементах БЭО, и, как следствие, выяснить зави-

симость температуры от различных физических и химических параметров, таких 

https://creativecommons.org/licenses/by/4.0/


как, размеры озонатора, тип системы охлаждения, амплитуда подаваемой мощ-

ности, материал барьера, электрода и другие. 

В [3, с. 72; 88] была построена математическая модель для расчета поля тем-

пературы в барьерном электрическом озонаторе с турбулентным режимом тече-

ния газа. В работе [5, с. 11–12] данная модель была усовершенствована с погра-

ничных слоев в газовом промежутке. Для каждой зоны выведено уравнение, опи-

сывающие распределение поля температуры в установившемся режиме работы. 

Построенная модель не имеет аналитического решения, за исключением 

уравнения, описывающего распределение поля температуры в турбулентном по-

токе. Поэтому решать ее необходимо численно, при помощи ЭВМ. Для этого 

нужно построить конечно-разностные схемы для дифференциальных уравнений. 

На рисунке 1 представлена схема расположения элементов озонатора. 

 
Рис. 1. Схема расположения элементов озонатора с турбулентным режимом 

течения газа, учитывающая пограничные слои газа 

 

Уравнение поля температур в зоне 3 (разрядный промежуток) для турбу-

лентного режима течения газа представляет собой линейное дифференциальное 

уравнение второго порядка. Его общее решение имеет вид: 

𝑇Г(𝑦) =
𝑞Г
𝜌𝑐𝑝𝑉

𝑦 + 𝐶1
𝜆Г
𝜌𝑐𝑝𝑉

𝑒𝑥𝑝 (
𝜌𝑐𝑝𝑉𝑦

𝜆Г
) + 𝐶2.

 
 

(1) 

С1 и С2 – числовые параметры, которые определяются постановкой в полу-

ченное выражение граничных условий: 

2

3 



С1 =
𝜌𝑐𝑝𝑉

𝜆Г
(𝑒𝑥𝑝 (

𝜌𝑐𝑝𝑉𝑙

𝜆Г
) -1)

-1

(𝑇𝐿-𝑇𝐴-
𝑞Г
𝜌𝑐𝑝𝑉

𝑙) , С2 = 𝑇𝐴-𝐶1
𝜆Г
𝜌𝑐𝑝𝑉

.
 

(2) 

При нормальных условиях воздух имеет плотность ρ≈1,3 кг/м3, теплоем-

кость ср≈1000 Дж/°С и коэффициент теплопроводности λ≈0.03 Вт/(м·°С). Следо-

вательно,
 

𝑒𝑥𝑝 (
𝜌𝑐𝑝𝑉𝑙

𝜆Г
) > 𝑒𝑥𝑝(4000), 

поэтому, с высокой степенью точности можно считать, что 

(𝑒𝑥𝑝 (
𝜌𝑐𝑝𝑉𝑙

𝜆Г
) -1)

-1

= 0. 

Таким образом, получаем: С1=0, С2=ТА. 

С учетом этого функция распределения температуры в каждой точке зоны 3 

(разрядный промежуток) принимает вид: 

𝑇3(𝑦) =
𝑞Г
𝜌𝑐𝑝𝑉

(𝑦-𝑙) + 𝑇𝐿

 
 

(3) 

Для нахождения поля температуры в остальных элементах озонатора будем 

использовать конечно-разностный метод решения дифференциальных уравне-

ний в частных производных [6, с. 89]. 

В данном случае частные производные можно дискретизировать следую-

щим образом: 

(
𝜕𝑇

𝜕𝑥
)
𝑖,𝑗
=
𝑇𝑖+1,𝑗-𝑇𝑖,𝑗

ℎ𝑥
;   (

𝜕2𝑇

𝜕𝑥2
)
𝑖,𝑗

=
𝑇𝑖+1,𝑗-2𝑇𝑖,𝑗 + 𝑇𝑖-1,𝑗

ℎ𝑥
2

; 

(
𝜕𝑇

𝜕𝑦
)
𝑖,𝑗

=
𝑇𝑖,𝑗+1-𝑇𝑖,𝑗

ℎ𝑦
;   (

𝜕2𝑇

𝜕𝑦2
)
𝑖,𝑗

=
𝑇𝑖,𝑗+1-2𝑇𝑖,𝑗 + 𝑇𝑖,𝑗-1

ℎ𝑦
2

;

 
 

(4) 

hx, hy – шаг сетки по оси абсцисс и ординат, соответственно. 

Подставив полученные выражения в исходные уравнения и выполнив пре-

образования, получим уравнение для нахождения поля температуры в металли-

ческих электродах и барьере: 

𝑇𝑖,𝑗 =
ℎ𝑦
2(𝑇𝑖,𝑗-1 + 𝑇𝑖,𝑗+1) + ℎ𝑥

2(𝑇𝑖-1,𝑗 + 𝑇𝑖+1,𝑗)

2(ℎ𝑦
2 + ℎ𝑥

2)

 
 

(5) 



для 2≤ i ≤ S-1, 2≤ j ≤M-1, M+N+K+P+T+2 ≤ j ≤M+N+K+P+T+F-1 и M+N+K+P+2 

≤ j ≤M+N+K+P+T-1. 

Для нахождения поля температуры в пограничном слое разрядного проме-

жутка, с учетом его узости, необходимо разбиение на более мелкие шаги hx1 по 

переменной х. Получим: 

𝑇𝑖,𝑗 =
ℎ𝑦
2(𝑇𝑖,𝑗-1 + 𝑇𝑖,𝑗+1) + ℎ𝑥1

2 (𝑇𝑖-1,𝑗 + 𝑇𝑖+1,𝑗)

2(ℎ𝑦
2 + ℎ𝑥1

2 )

+
ℎ𝑥1
2 ℎ𝑦

2

2(ℎ𝑦
2 + ℎ𝑥1

2 )
(
𝑞Г
𝜆Г
-
𝑐𝑝𝜌𝑉𝑖(𝑇𝑖+1,𝑗-𝑇𝑖-1,𝑗)

2𝜆Гℎ𝑦
),

 
 

(6) 

Vi- усредненная продольная составляющая скорости, которую можно найти 

по формуле: 

𝑉𝑖 =

{
 
 
 
 

 
 
 
 𝑄𝑣 (1-𝑒𝑥𝑝 (-

𝑥
𝛿
))

𝐴 (∆ + 2𝛿 (𝑒𝑥𝑝 (
∆
2𝛿
) -1))

, 0 ≤ 𝑥 ≤
∆

2
,

𝑄𝑣 (1-𝑒𝑥𝑝 (
𝑥-∆
𝛿
))

𝐴(∆ + 2𝛿 (𝑒𝑥𝑝 (-
∆
2𝛿
) -1))

,
∆

2
≤ 𝑥 ≤ ∆, 

 

(7) 

где δ – толщина пограничного слоя, QV- расход газа через озонатор [3, с. 91]. 

Граничные условия для расчета поля температуры на границах перехода из 

одного элемента озонатора в другой, на их торцевых границах и на входе и вы-

ходе разрядного промежутка после преобразования примут вид:  

Г21, Г22, Г24, Г25, Г26:  Тs,j=Ts-1,j, 0 ≤ j ≤ M+N,   

 M+N+K+P ≤ j ≤ M+N+K+P+T+F; 

Г11, Г15, Г16: Т2,j=T1,j, 0 ≤ j ≤ M+N, M+N+K+P ≤ j ≤ M+N+K+P+T+F;  

Г12, Г13, Г14 : Т1,j=TA, M ≤ j ≤ M+N+K+P;  

Г23: Тs,j=TL, M+N ≤ j ≤ M+N+K;  

L1: 𝜆М
𝑇𝑖+1,𝑀-𝑇𝑖,𝑀

ℎ𝑥
= 𝛼𝑋(𝑇𝑖,𝑀-𝑇Ж);  

 

L2: 𝛼ГМ(𝑇𝑖,𝑀+𝑁-𝑇𝑖,𝑀+𝑁-1) = 𝜆М
𝑇𝑖,𝑀+𝑁+1-𝑇𝑖,𝑀+𝑁

ℎ𝑥
+ 𝑞ГМ

∗ ;

 
 

(8) 

L3: 𝑇𝑖,𝑀+𝑁 = 𝑇𝑖,𝑀+𝑁+1;

 
 

 

L4: 𝑇𝑖,𝑀+𝑁+𝐾 = 𝑇𝑖,𝑀+𝑁+𝐾-1;

 
 

 



L5: 𝛼ГБ(𝑇𝑖,𝑀+𝑁+𝐾+𝑃-𝑇𝑖,𝑀+𝑁+𝐾+𝑃-1)

= 𝜆М
𝑇𝑖,𝑀+𝑁+𝐾+𝑃+1-𝑇𝑖,𝑀+𝑁+𝐾+𝑃

ℎ𝑥
+ 𝑞ГБ

∗ ;

 
 

 

L6: 
𝑇𝑖,𝑀+𝑁+𝐾+𝑃+𝑇 =

𝜆𝑀𝑇𝑖,𝑀+𝑁+𝐾+𝑃+𝑇+1 + 𝜆Б𝑇𝑖,𝑀+𝑁+𝐾+𝑃+𝑇-1
𝜆Б + 𝜆𝑀  

 

L7: 𝑇𝑖,𝑀+𝑁+𝐾+𝑃+𝑇+𝐹 = 𝑇𝑖,𝑀+𝑁+𝐾+𝑃+𝑇+𝐹-1;
 (2≤ i ≤S-1)

  

Таким образом, (3), (5), (6), (8) образуют разностные схемы, которые позво-

ляют рассчитать температуру в каждом узле сетки поля температуры. Для рас-

чета удобно использовать метод простой итерации 

Этот метод основан на принципе сжимающих отображений [6, c. 79]. Суть 

метода – нахождение алгоритма поиска по известному приближению искомой 

величины следующего, более точного приближения. Применяется в случае, ко-

гда последовательность приближений по указанному алгоритму сходится. 

Уравнение (5) – это разностная схема для уравнения Лапласа в двумерном 

пространстве. В [2, c. 669] показано, что метод сеток для уравнения Лапласа схо-

диться со скоростью h2. 

Уравнение (6) – разностная схема для уравнения Пуассона, которое также 

является сходящимся [1, с. 543] cо скоростью О(h2) ≥ ||ui-u|| – оценка, зависящая 

от шага сетки (u – точное решение, ui – решение, полученное на i-той итерации). 

В данном случае в качестве начального приближения удобно считать, что в 

начальный момент времени температура в каждом узле сетки охлаждаемого 

электрода изменяется линейно по оси Оx от ТЖ до ТА, а от y температура не зави-

сит. Во всех остальных узлах начальная температура равна исходной темпера-

туре атмосферы ТА. 
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