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Аннотация: в данной статье авторами излагается метод коллокации для 

приближенного решения дробно-дифференциального уравнения. Проведен чис-

ленный эксперимент. Показана сходимость метода коллокаций. 
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Пусть X и Y произвольные линейные нормированные пространства, а 0nX  

и 
nY , ( n =1, 2, …) их произвольные линейные подпространства конечной размер-

ности. 

Рассмотрим уравнения: 

yKx   ),,( YyXx   (1.1)  

nnn yxK   ),,( nnnn YyXx   (1.2)  

где K  и nK  – аддитивные и однородные операторы, действующие из X  в Y и из 

nX  в nY  соответственно. 
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Уравнение (1.2) при любом фиксированном n эквивалентно системе линей-

ных алгебраических уравнений порядка 
nXnNN dim)(   относительно коэффи-

циентов разложения элемента 
nn Xx   по базису пространства 

nX . Этим и можно 

объяснить причину замены нашего бесконечномерного уравнения (1.1) конечно-

мерным уравнением (1.2). 

Рассмотрим дробное интегро-дифференциальное уравнение со слабо сингу-

лярным ядром:        tfdssystktytyD  
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Проводя необходимые вычисления, получим  tf : 

 
Далее решим исходное уравнение методом коллокации. Приближенное зна-

чение будем искать в виде полинома    
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k . Доказательство вида  tk  приведено в книге (см. например, 

в [2]). Подставляем приближенное значение  tyn  в исходное уравнение: 
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Неизвестные коэффициенты 
kc  определим из условий 
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Решим эту систему для n=3: 

  

,  

где a, b, c равно 
321 ,, ccc  соответственно. Получили  tyn =

. 

Близость приближенного решения к точному можно оценить по изображе-

нию на графике (рис. 1) и по таблице (таблица 1). 

 
Рис. 1 



Таблица 1 

Разница приближенного значения функции от точного в точках 

 

 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

 

 
0,01 0,04 0,09 0,16 0,25 0,36 0,49 0,64 0,81 1 

)(tyn
 –0,24661 –0,35311 –0,43213 –0,49204 –0,53503 –0,56156 –0,57139 –0,56398 –0,53867 –0,49471 

 
0,256606 0,393107 0,522127 0,652037 0,785034 0,921561 1,061387 1,203981 1,34867 1,494713 
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