Данилов Артём Сергеевич

студент

Шарков Никита Дмитриевич

студент

Шеманаева Людмила Ивановна

канд. техн. наук, доцент

ФГБОУ ВПО «Ковровская государственная

технологическая академия им. В.А. Дегтярева»

г. Ковров, Владимирская область

ИНВЕРТОРЫ ДЛЯ ДВИГАТЕЛЕЙ ЛИФТА И ИХ УПРАВЛЕНИЕ НА ОСНОВЕ МИКРОПРОЦЕССОРОВ

Аннотация: в данной статье рассмотрен инвертор для двигателя лифта. В работе представлен алгоритм программы микроконтроллера.

Ключевые слова: инвертор, лифт, электрическая энергия, аккумулятор, микроконтроллер.

В данном докладе представлен инвертор для двигателя лифта, который работает от аккумулятора, при отключении электроэнергии. Если произошло внезапное отключение электроэнергии, а в лифте находились люди, им не придется ждать, когда приедут работники по обслуживанию лифта. Вместо этого включится инвертор и довезет людей до нужного им этажа.

Все это устройство состоит из трех модулей: инвертор, аккумулятор, микроконтроллер.

Аккумулятор берется емкостью C=60 Ампер/часов. В девятиэтажном доме мощность двигателя лифта P=4500 Вт. Из этих данных можно рассчитать время работы инвертора $T=\frac{C\cdot 8.5}{P}=\frac{60\cdot 8.5}{4500}=\frac{510}{4500}=0.11$ час.

Время работы T=0.11 час. =6,6 мин. Этого времени вполне хватит для того чтобы лифт смог подняться или спуститься на любой этаж.

Инвертор собирается согласно схеме, приведенной на рисунке 1. Описание схемы: Основой конструкции является мультивибратор, он же задает частоту, затем транзисторный каскад, который открывает более мощные транзисторы. В качестве трансформатора использован Ш-образный трансформатор

Для того чтобы частота инвертора соответствовала частоте электрической сети, регулируем ее конденсаторами и резисторами:

$$f = \frac{1}{T} = \frac{1}{\ln 2 \cdot (R_7 \cdot C_1 + R_8 \cdot C_2)} = \frac{1}{\ln 2 \cdot (27000 \cdot 0,53 + 27000 \cdot 0,53)}$$
$$= 50.38 \, \Gamma \text{ц}$$

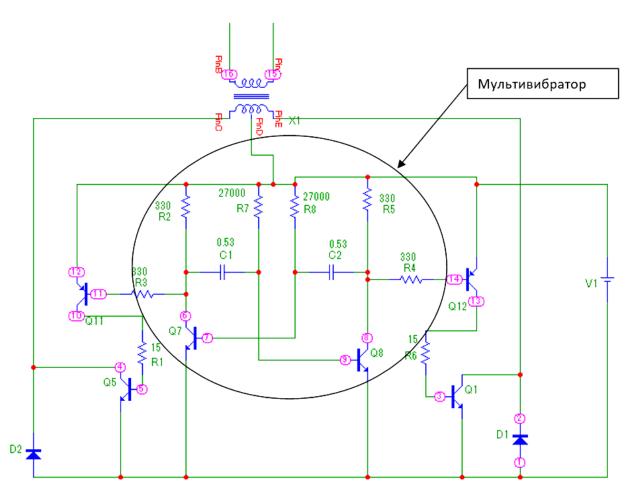


Рис. 1. Схема инвертора

Данная схема позволяет от аккумулятора емкостью 60 Ампер/часов запустить двигатель мощностью 4500 Вт.

Микроконтроллер предназначен для своевременного включения и отключения инвертора в цепь двигателя лифта. Микроконтроллер будет запрограммирован согласно алгоритму, предложенному на рисунке 2.

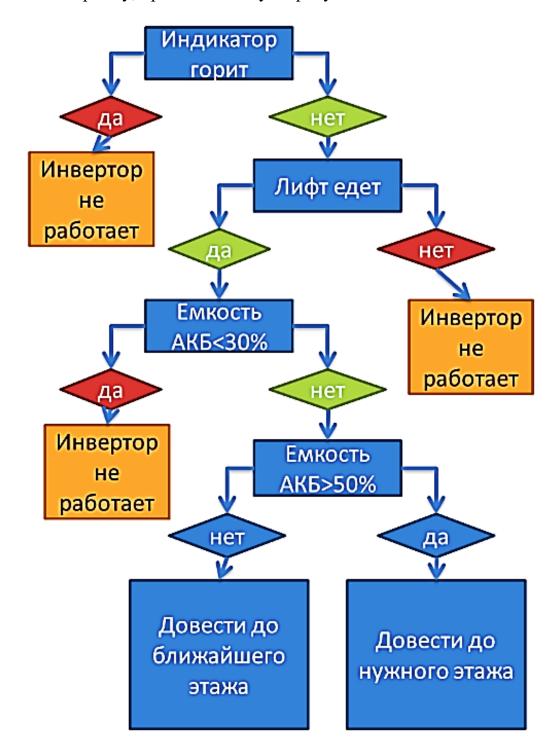


Рис. 2. Алгоритм программы микроконтроллера

Стоимость проекта определяется из общей суммы всех модулей: стоимость аккумулятора равна 3500 рублей, микроконтроллера 300 рублей, инвертора

15000 рублей. А стоимость лифта составляет 2000000 рублей. Из данных видно, что стоимость всего проекта составляет 18800 рублей, а это всего 0,94% от стоимости лифта.