

Якимчук Александр Васильевич

студент

Дюбко Ирина Сергеевна

магистрант

Татьянкин Виталий Михайлович

старший преподаватель

ФГБОУ ВО «Югорский государственный университет»

г. Ханты-Мансийск, ХМАО – Югра

ДОЛГОСРОЧНОЕ ПРОГНОЗИРОВАНИЕ ПОГОДЫ ПОСРЕДСТВОМ ИСПОЛЬЗОВАНИЯ НЕЙРОННЫХ СЕТЕЙ

Аннотация: в данной статье рассматривается применение многослойных искусственных нейронных сетей для прогнозирования погоды на примере города Ханты-Мансийск. Нейронные сети выступают как инструмент для разработки эффективных и надежных нелинейных прогнозов погоды.

Ключевые слова: прогнозирование, погода, многослойная нейронная сеть, метод обратного распространения ошибки.

Введение

В настоящее время повышение эффективности прогнозирования метеорологических условий остаётся актуальной задачей для науки. Данные о погоде и прогнозирование имеют существенное значение в ряде отраслей: экономика, авиация, строительство, сельское хозяйство и др., так как планирование и проведение различных видов мероприятий и работ во многом зависит от погодных условий.

Постановка задачи

Для создания нейронной сети необходимо собрать данные для обучающей выборки. В качестве входных значений будут выступать ряд показателей, которые влияют на погоду: температура воздуха, влажность, атмосферное давление и ветер. Выходным параметром будет прогноз погоды.

Данные для обучающей выборкисобраны за январь в период с 1990 по 2015, но в качестве входных данных будут использоваться только с 1990–2010, т.к. оставшиеся данные будут применены в качестве тестовых. В таблице 1 представлены данные в период с 1990–2015 год [1]

Таблица 1 Данные для обучающей выборки

Год	Температура,	Влажность,	Давление,	Ветер,
	$^{\circ}C$	%	мм рт. ст.	м/с
1990	-22	65	777	4
1991	-14	77	751	2
1992	-18	72	760	3
1993	-22	59	770	5
1994	-20	63	768	2
1995	-19	68	765	1
1996	-21	61	771	2
1997	-20	66	769	3
1998	-19	72	768	4
1999	-19	76	765	5
2000	-18	81	763	3
2001	-21	59	772	2
2002	-16	75	755	3
2003	-15	77	751	2
2004	-18	74	761	3
2005	-21	58	775	1
2006	-19	61	769	4
2007	-14	89	750	3
2008	-17	64	752	3
2009	-16	77	755	1
2010	-20	57	770	2
2011	-21	53	760	3
2012	-18	63	751	1
2013	-19	61	768	1
2014	-21	58	766	3
2015	-18	62	763	2

В качестве алгоритма для обучения нейронной сети был выбран метод обратного распространения ошибки. Суть данного метода заключается в распространении сигналов ошибки от выходов сети к её входам в направлении, обратном прямому распространению сигналов в обычном режиме работы [2].

Для возможности прогнозирования погоды в среде Matlab была написана программная реализация многослойной нейронной сети методом обратного распространения ошибки, со следующими параметрами обучения: шаг обучения α =0.042; среднеквадратичная ошибка E_m =0,53; весовые коэффициенты и пороговые значения инициализируются случайным образом; количество входных нейронов равно 5; количество скрытых нейронов равно 50. Данные параметры обучения показали наилучший результат при обучении многослойной нейронной сети.

Прогнозирование данных

После обучения сети можно перейти к прогнозированию данных. Спрогнозируем данные на пять лет, и сравним их с действительными. Результат приведён на рисунке 1. Красной линией обозначены действительные данные, а синей спрогнозированные данные.

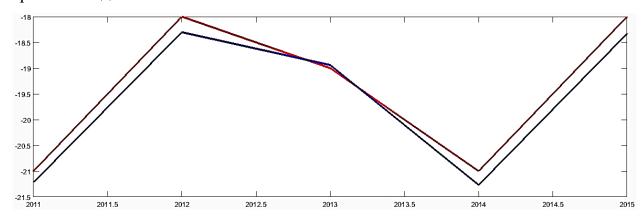


Рис. 1. Спрогнозированная и действительная температура воздуха в период 2011–2015 год

Заключение

В данной работе была создана многослойная обученная нейронная сеть, которая показала хорошие результаты, и погрешность составила порядка 3–5%, что для прогнозирования погоды считается хорошим результатом. Можно сделать вывод о том, что нейронные сети, в частности метод обратного распространения ошибки, являются хорошим инструментом для прогнозирования погоды и других нелинейных данных.

Список литературы

- 1. Климат городов России [Электронный ресурс]. Режим доступа: http://www.atlas-yakutia.ru/weather/climate_russia-I.html
- 2. Головко В.А. Нейронные сети: обучение, организация и применение. Кн. 10: Учеб. пособие для вузов / Общая ред. А.И. Галушкина. – М.: ИПРЖР, 2000.