

Журавлёв Александр Иванович

студент

Фадеев Александр Николаевич

канд. техн. наук, доцент

ФГБОУ ВПО «Поволжский государственный

технологический университет»

г. Йошкар-Ола, Республика Марий Эл

ЛЕПЕСТКОВАЯ ДИАГРАММА КАК СРЕДСТВО ОТОБРАЖЕНИЯ РЕЗУЛЬТАТОВ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Аннотация: в данной статье авторами выполнено математическое моделирование морфометрических параметров котловины озера Морской Глаз в программной среде CurveExpert 1.4. В работе описан метод графического представления результатов моделирования в виде лепестковых диаграмм, позволяющих визуально оценивать зависимости параметров.

Ключевые слова: лепестковая диаграмма, математическое моделирование, морфометрические параметры, трехмерная модель, румб.

1 июля 2014 года состоялась экспедиция на озеро Морской Глаз (д. Шарибоксад, Волжский район, республика Марий Эл), в результате которой была получена цифровая модель котловины [1].

Для оценки параметров склонов котловины выполнено построение профилей, берущих начало из самой низкой (глубокой) точки и ориентированных по 8 направлениям света: север, северо-восток, восток, юго-восток, юг, юго-запад, запад, северо-запад.

Модели математического моделирования котловины озера получены в программной среде CurveExpert 1.4.

Для моделирования применена формула, представленная смесью устойчивых законов, полученных объединением закона показательного роста, закона экспоненциальной гибели, простого устойчивого закона, и волнового изменения. Описывает волновые сигналы с амплитудой и периодом колебательных возмущений на основе биотехнического закона:

$$y = a + b * x^{c} * exp(-d * x) + e * x^{f} * exp(-g * x) * cos(h * x-i).$$
 (1.1)

Результаты математического моделирования занесены в табл. 1.

Таблица 1 Параметры готовой статистической модели склона котловины озера Морской Глаз

Румб	Значения параметров, составляющих модели по формуле 1.1								
	a	b	С	d	e	f	g	h	i
С	83,36	1,05	1,20	0,016	2,68*10 ⁻⁹	16,98	1,70	0,73	-2,90
СВ	84,88	1,44	1,12	0,015	0,68	2,38	0,39	0,43	2,91
В	84,1	1,81	1,22	0,034	0,04	1,93	0,07	0,20	1,38
ЮВ	84,79	1,42	1,31	0,04	$-5,65*10^{-8}$	18,19	2,37	0,41	2,21
Ю	84,51	2,41	1,14	0,031	0,02	7,53	0,99	0,02	1,68
ЮЗ	85,55	0,55	1,69	0,046	-0,44	2,29	0,31	0,84	-2,35
3	84,68	1,87	1,06	0,01	0,06	2,38	0,17	-0,35	0,21
СЗ	84,18	2,33	0,9	0,004	1,63	0,85	0,11	-0,29	1,34

Графическое представление позволяет визуально установить зависимости параметров от направления склона (рис. 1).



Рис. 1. Значения параметров из табл. 1 в виде лепестковых диаграмм

Параметр а характеризует простой устойчивый закон и указывает на линейную предысторию. Вторая и третья составные части содержат параметры b, c, d (e, f, g) и являются биотехническим законом в краткой форме, где b (e) и d (f) характеризуют активность роста и активность гибели, c (g) — интенсивность роста. Параметры h и i — амплитуда и период колебательных возмущений.

Для параметра а наблюдается 2 скачка за пределами интервала в 84–85, это увеличение для ЮЗ и уменьшение для С. Для параметра с скачек на увеличение для ЮЗ, уменьшение для СЗ.

Лепестковые диаграммы (рис. 1) можно классифицировать как:

- стабильные, не имеющие значительных числовых отклонений (параметры а и с);
- скачкообразные, значения сильно разняться и график обретает соответствующий «игольчатый» вид (параметры e, f, g);
- смещённые, значения в одном направлении отличительно больше чем в другом, в результате чего создается видимость смещения графика относительно центра (параметр d);
- уравновешенные, напоминают смещенные, но с одним отличием, заключающимся в том, что в противоположную сторону от смещения (выделяющийся сектор) имеют некоторый увеличивающий скачек (стабилизирующий сектор).

Список литературы

1. Журавлёв А.И. Получение о обработка морфометрических характеристик озера Морской Глаз / А.И. Журавлёв // Инженерные кадры — будущее инновационной экономики России: Материалы Всероссийской студенческой конференции (Йошкар-Ола, 23–28 ноября 2015 г.): В 8 ч. Ч. 5: Инновации в строительстве, природообустройстве и техносферной безопасности / Редкол.: В.Г. Котлов, В.М Поздеев [и др.]. — Йошкар-Ола: Поволжский государственный технологический университет, 2015. — 316 с.