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В геодезии традиционно все измерения делят на две группы. Первая группа 

включает «прямые» (ещё их называют «непосредственные») измерения, при ко-

торых результат получается непосредственно из измерения самой величины. Из-

мерения второй группы называют «косвенными», основанными на известных за-

висимостях между искомой величиной и непосредственно измеряемыми величи-

нами. В результате косвенных измерений получают вычисленное значение иско-

мой величины. 

Необходимость определения радиусов может возникнуть при обмерах ин-

женерных сооружений, имеющих форму тела вращения: дымовые и вентиляци-

онные трубы, воздухонагреватели, градирни, ректификационные колонны, гра-

нуляционные башни, доменные печи, силосные башни, копры над стволами 

шахт, водонапорные башни, радиотелевизионные антенные опоры, колонны зда-

ний, различные резервуары, купола исторических памятников и др. Кроме того, 
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радиус необходим для определения координат центра сооружения. Фактические 

радиусы наиболее просто могут быть определены путём непосредственных из-

мерений периметра 2πR наблюдаемых сечений сооружения. Однако выполнить 

это на практике проблематично, особенно если эти сечения расположены на раз-

ной высоте от земли. В статье рассматриваются косвенные способы определения 

радиуса сооружений круглой формы. 

Так, в работе [1] предлагается вначале определять координаты центра со-

оружения методом трёх точек на окружности путём выполнения соответствую-

щих угловых и линейных измерений. А затем, после довольно громоздких вы-

числений, находить радиус сооружения. 

В нашей работе [5] показано, что упростить решение поставленной задачи 

можно, если с помощью электронного тахеометра безотражательного типа сразу 

определять координаты любых трёх точек даже без предварительной их марки-

ровки на сооружении. Это приводит к значительному сокращению измеритель-

ных и вычислительных операций по определению радиуса. 

Другим достоинством предлагаемой нами методики является то, что она 

позволяет определять радиус сечений сооружения, расположенных на разной вы-

соте от земли. Для повышения точности и надёжности получаемых результатов 

количество наблюдаемых точек можно увеличить. Так, для четырёх точек полу-

чим четыре результата, для пяти – десять и т. д. В этом случае перебираются все 

сочетания по 3 из имеющихся n точек. Для каждой тройки вычисляются пара-

метры окружности, проходящей через эти три точки и затем все найденные па-

раметры усредняются. 

Для строгого решения задачи в системе MatLab [9] нами разработана специ-

альная программа, которая подсчитывает координаты центров сечений, их ради-

усы, строит окружности, находит параметры и вычерчивает усреднённую и 

найденную по методу наименьших квадратов оптимальную окружность. 

Результаты выполненного нами знакового моделирования по трём, четырём 

и пяти произвольным точкам показали, что параметры усреднённой и оптималь-

Рис. 65. Программа 
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ной окружностей получаются практически одинаковыми. Этот вывод иллюстри-

руется на рис. 1, на котором приведен пример разработанной программы MatLab 

для четырёх произвольных точек и где видно совпадение усреднённой и опти-

мальной окружностей. 
 

 

Рис. 1. Пример программы МатLав для четырёх произвольных точек 

 

В работе [4] предлагаются два способа определения радиуса сооружений, 

имеющих в плане форму круга: способ «продольного базиса» и способ «попереч-

ного базиса». Однако на практике в условиях плотной застройки, бывает трудно 

выбрать такое местоположение базисных точек, которое обеспечивало бы види-

мость как самого изучаемого объекта, так и взаимную видимость между этими 

точками. 

В работе [2] описаны пять способов определения радиуса сооружений ба-

шенного типа. Они основаны на различных линейно‐угловых измерениях с ис-

пользованием точек касания линий, проведенных из базовой точки к образую-

щей сооружения. Эти точки предлагается определять с помощью натянутой по 

этой линии рулетки и отмечания места её касания с сооружением. Однако опыт 

показывает, что подобным образом положение точек касания будут определено 

с большой погрешностью, что автоматически скажется на точности определения 

радиуса. 



Для исключения этого недостатка нами предлагается использовать простое 

устройство, действующий макет которого представлен на рис. 2. С его помощью 

можно определять положение точки касания с точностью 2–3 мм. 

 

Рис. 2. Определение направления визирного приспособления макета  

на базисную точку и отмечание на трубе точки его касания 
 

В связи с этим предлагается «линейный» способ определения радиуса со-

оружения круглой формы. Он предусматривает измерение, например, лазерной 

рулеткой из некоторой точки А1 всего двух расстояний: А1Д = d по направлению 

на центр О сооружения и А1К1 = l по направлению касательной к образующей 

сооружения (рис. 3). 

 

 

Рис. 3. Схема к определению радиуса «линейным» способом 
 

В этом случае радиус R можно вычислить по формуле 
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В таком «линейном» способе для измерения расстояния d с помощью лазер-

ной рулетки, например, HD150 достаточно воспользоваться её клавишей «min‐

max», проведя лазерным пучком по образующей сооружения слева направо от 

(1) 



точки Д. Минимальное расстояние на дисплее покажет величину d с точностью 

2–3 мм, заявленной в паспорте этой рулетки. Что касается расстояния l, то 

ошибка его измерения в основном будет зависеть от точности определения по-

ложения точки касания К1 на образующей сооружения. 

Было выполнено знаковое моделирование этого способа, где в качестве мо-

дели фигурировало изображение сечения радиуса 50 условных единиц. Последо-

вательно измерялись с точностью 0,1 мм отрезки l при различных «отстояниях» 

точки А при d от 50 до 350 условных единиц (уе). 

Вычисленные по формуле (1) значения радиуса оказались равными 49,94 – 

50,04 и в среднем 49,98, что отличается от истинного значения на 0,02 условных 

единицы, что составляет 1:2500 от величины радиуса.
 
 

В результате исследований формулы (1) с позиций теории ошибок получено 

выражение (2) для определения mR средней квадратической ошибки радиуса в 

зависимости от ошибок ml и md измерения расстояний l и d. 
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Подсчитанные по формуле (2) ошибки радиуса mR для ml и md равных 5, 3 и 

2 мм иллюстрируются графиком на рис. 4. 
 

 
Рис. 4. Графики зависимости ошибки  mR    от  ml = md = 5, 3, 2 мм 

 

(2) 



На основании этих графиков можно констатировать, что начиная с расстоя-

ния d, превышающего радиус в 3–4 и более раза, ошибка радиуса mR для опреде-

лённого значения ml и md остаётся практически неизменной. Для контроля можно 

дополнительно измерить расстояние l по касательной А1Кʹ1. 

С целью подтверждения возможности и уточнения методики использования 

«линейного» способа были проведены его натурные испытания. В качестве объ-

екта наблюдений выступала дымовая труба с радиусом поперечного сечения в её 

нижней части около двух метров. 

На местности на расстояниях 5, 10, 15 и 20 м от точки Д были отмечены 

точки А1, А2, А3 и А4 (рис. 3). В этих точках последовательно устанавливался 

штатив на одном уровне с исследуемым сечением трубы, служащий в дальней-

шем ориентиром для определения на этом сечении трубы точек К1,2,3,4 с помощью 

действующего макета устройства (рис. 2). 

Затем с помощью лазерной рулетки HD150, расположенной на головке шта-

тива, последовательно измерялись расстояния d1,2,3,4 по изложенной выше мето-

дике и расстояния l1,2,3,4 путём наведения лазерного пучка на экран‐отражатель, 

удерживаемый на точках касания К1,2,3,4. Одновременно все действия выполня-

лись с другой стороны трубы, вследствие чего были найдены точки касания 

К´1,2,3,4 (рис. 3) и измерены расстояния d´1,2,3,4 и l´1,2,3,4. В результате установлено, 

что полученное среднее значение радиуса отличается 

от его истинного значения (найденного из измеренного рулеткой значения 

2πR) всего на 6 мм. 

В работе [3] приведена методика определения радиуса сооружения фотогра-

фическим способом по одиночному снимку и по снимкам стереопары. Однако 

следует оговориться, что фотограмметрическая обработка снимков потребует 

квалифицированного исполнителя и знания современных автоматизированных 

программ такой обработки. В настоящее время для фотограмметрических изме-

рений снимков можно использовать компьютерный стереокомпаратор КSК‐4 

или одну из цифровых фотограмметрических систем ЦФС, таких, например, как 

ERDAS, ENVI, PHOTOMOD. 



Широкое распространение неметрических цифровых фотокамер в сочета-

нии с компьютерной техникой позволяют рекомендовать новые фотографиче-

ские способы определения радиусов сооружений круглой формы [7]. Эти спо-

собы предусматривают фотографирование сооружения с приложенной к нему 

нивелирной рейкой из некоторой точки Ф1 с одновременным измерением гори-

зонтального расстояния d (рис. 5). 

 
 

Рис. 5. Схема определения радиуса путём фотографирования с двух точек 

Измерив на снимке с помощью, например, программы ArchiCAD 11 длину 

хорды 1–2 = 2h, можно вычислить радиус сооружения: 
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где n – число укладываний радиуса в расстоянии Ф1О = d +R. 

Для масштабирования снимка по нивелирной рейке, расположенной в точке 

3, а не в точке О1, в длину рейки 2с необходимо вводить поправку 2п, которую 

вычисляют по формуле: 
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Недостатком способа является необходимость знания числа n и довольно 

сложный переход от метрической величины поправки 2п к пикселям. Избежать 

этого можно, если определить положение точки касания, например, 2 с помощью 

описанного выше устройства. Затем, расположив рейку вдоль хорды 1–2, фото-

графируют её из точки Ф2. Измерив на первом снимке количество пикселей, при-

ходящихся на хорду 1–2, а на втором снимке количество пикселей, приходя-

щихся на длину рейки, можно непосредственно определить О12 = h в метриче-

ской системе единиц. В этом случае радиус R можно вычислить по значениям 

только d и h в следующей последовательности. 

Вначале по известным значениям d и h находят t2 = d2 – h2. Затем по форму-

лам (3) вычисляют вспомогательные величины p, q и D: 
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По формулам (6) вычисляют u, v и их сумму y: 

𝑢 = √‐ 𝑞 + √𝐷
3

, 𝑣 = √‐ 𝑞‐ √𝐷
3

, y = u + v,    (6) 

и, наконец, по формуле (7) находят значение радиуса R: 

𝑅 = 𝑦‐
𝑡2

6𝑑
.       (7) 

Возможность определения отрезка О1–2 = h позволяет рекомендовать так 

называемый «комбинированный» способ, в котором радиус может быть вычис-

лен по формуле: 
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Результаты измерений d, l и h по схеме на рис. 5 и вычислений радиуса по 

формуле (8) оказались равными 49,95 – 50,03, что в среднем составило 49,99 или 

отличается от истинного значения всего на 0,01 условной единицы. 

В результате исследований формулы (8) с позиций теории ошибок получено 

выражение (9) для определения mR средней квадратической ошибки радиуса в 

зависимости от ошибок mh, ml и md измерения расстояний h, l и d. 
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Подсчитанные по формуле (9) ошибки mR радиуса для md, ml и mh, равных 

между собой соответственно 5, 3 и 2 мм, иллюстрируются графиком на рис. 6. 
 

 
 

Рис. 6. Графики зависимости ошибки mR от mh = ml = md = 5, 3, 2 мм 

На этих графиках можно наблюдать практически ту же закономерность, что 

и на рис. 4 для «линейного» способа. 

Если ошибки mh, ml и md не равны между собой, то представляет интерес 

определение их оптимального сочетания. Для этого были подсчитанные по фор-

муле (9) ошибки радиуса mR для ошибок mh, ml и md равных 5, 3 и 2 мм при раз-

личных шести их сочетаниях. Результаты вычислений иллюстрируются графи-

ком на рис. 7. 

Анализ графиков на рис. 7 позволяет констатировать, что наиболее точные 

результаты определения радиуса получаются при первом и пятом сочетании, ко-

гда ошибка mh наименьшая по сравнению с ошибками определения l и d. 

 

(9) 

5 мм 

3 мм 

2 мм 



 Рис. 7. Графики зависимости ошибки mR от различного сочетания 

от 1 до 6 ошибок mh, ml и md 

 

Если (см. рис. 5) обозначить Ф1О/R = n, то радиус R можно определить по 

формуле 
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По выполненным выше результатам измерений d и h по схеме на рис. 5 вы-

численные по формуле (10) значения радиуса оказались равными 49,96 – 50,01 и 

в среднем 49,99, что отличается от истинного значения всего на 0,01 условной 

единицы. Характер изменения коэффициента k1 представлен на графике (рис. 8). 

На основании этого графика можно констатировать, что начиная с n равного 

5 и более значения k1 остаются практически неизменными. Из этого следует, что 

коэффициент k1 при соответствующих расстояниях d может не оказывать замет-

ного влияния на точность определения радиуса. 

 

(10) 



 
Рис. 8. График зависимости коэффициента k1 от различных значений n 

 

Действительно, если на основании формулы (10) средняя квадратическая 

ошибка радиуса mR будет равна: 

mR = k1mh,      (11) 

то результаты вычислений по формуле (11) и построенные по ним графики 

(рис. 9) наглядно иллюстрируют, что начиная с n равного 5 и более значения mR 

остаются практически неизменными. 

 

  

Рис. 9. Графики зависимости ошибки mR от n  

для различных mh = 5, 3 и 2 мм 

Как показано в нашей работе [7], необходимо в измеренное на снимке рас-

стояние О1–2 = h вводить поправку p: 



.
1

1
22

сk
n

n
cp 






 

На рис. 10 показан график зависимости коэффициента k2 от n. На основании 

этого графика можно констатировать, что величина k2 находится в пределах от 

0,3 до 0,1, поэтому коэффициент k2 подлежит при измерениях обязательному 

учёту. 

 

 
Рис. 10. График зависимости коэффициента k2 от n 

Необходимо отметить, что пользоваться формулами (5) – (7) можно, когда 

величина d1 не превышает трёх R. Определение радиуса по значениям d2 и h ли-

шено этих ограничений и заключается в следующем. Вначале вычисляют угол β 

(рис. 5): 

β = arctg (h/d2),      (13) 

а затем радиус можно вычислить по формулам (14) или (15): 

R = h/cosβ,       (14) 

R = 
𝑑1𝑠𝑖𝑛β

 1‐𝑠𝑖𝑛β 
,       (15) 

С целью проверки предложенной методики и определения условий её при-

менения были проведены соответствующие измерения сечения дымовой трубы 

радиусом 2 м (рис. 11) с трёх положений точек Ф1 и Ф2. 

 

(12) 



 

Рис. 11. Фотографирование базиса для определения d1, Δ1–2 и d2 

 

Выбор расстояний d1 в пределах 5 м был обусловлен тем, что они не должны 

превышать трёх R для возможности использования формул (5) – (7). Относитель-

ные ошибки определения радиуса по формуле (7) и по формуле (14) оказались 

одинаковыми в пределах 7,5 – 4,5%, в то время как ошибки вычисленного ради-

уса по формуле (15) находятся в пределах 3 – 1%. Причём наблюдается отмечен-

ная ранее тенденция повышения точности с увеличением расстояния от камеры 

до базиса. 

На основании вышесказанного предложен способ определения радиуса, по-

казанный на рис. 12, предусматривающий измерение расстояния d и фотографи-

рование сооружения только из одной точки Ф1. 

Решение поставленной задачи заключается в определении на фотографии 

количества пикселей, приходящихся на длину рейки и количества пикселей при-

ходящихся на отрезок 1–2 (рис. 12). Умножив величину 1–2 в пикселях на отно-

шение длины рейки в метрах на длину рейки в пикселях, получают приблизи-

тельное значение ЛП в метрах. 
 

1 2 
1 
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Рис. 12. Схема к определению радиуса путём  

фотографирования из одной точки 
 

Как следует из схемы на рис. 12, с увеличением расстояния d1 угол β = arctg 

[(ЛП)/2d1] уменьшается, хорда 1–2 приближается к диаметру сечения 2R, а отре-

зок ЛП приближается к величине хорды 1–2. Поэтому, для обеспечения требуе-

мой точности определения R необходимо знать такое расстояние d1´, при кото-

ром ошибка определения радиуса не превысит ошибок определения расстояния 

и ЛП. 

Исследование с позиций теории ошибок формул для β и R при различных 

расстояниях d = nR показало, что начиная с n = 5 и более, средняя квадратическая 

ошибка (СКО) mR определения радиуса остаётся практически одной и той же 

независимо от расстояния d. Её величина зависит только от СКО mЛП и md. 

Предлагаемый способ был опробован путём фотографирования дымовой 

трубы (см. рис. 10) с приложенной к ней нивелирной рейкой с расстояний 5, 10, 

15, 20 и 25 м, что соответствует величине n от 1 до 12. Полученные в результате 

измерений данные сравнивались с истинным радиусом сечения. Расхождения со-

ставили соответственно 14, 12, 10, 8 и 4 мм, что подтверждают возможность ис-

пользования рассматриваемой методики для фотографического способа опреде-

ления радиуса сооружения круглой формы. 

Другой способ поясняется рис. 12 и заключается в измерении двух расстоя-

ний d1 и d2 путём фотографирования базиса только из одной точки Ф1. Вначале 

фотографируют базис в точке 3. Затем устанавливают его в точке касания 1 или 



2, располагая рейку горизонтально и перпендикулярно оптической оси фотока-

меры. Этого можно достичь с помощью любого визирного приспособления, за-

креплённого в середине рейки и перпендикулярно ей. 
 

 

Рис. 13. Схема определения радиуса по двум расстояниям d1 и d2 

 

Измеряют на снимках количество пикселей Δ1 и Δ2, приходящихся на длину 

рейки в первом и втором положении. По этим данным определяют два расстоя-

ния d1 и d2 и, вычислив l2 = d2
2 +b2/4, находят радиус по формуле 

.
2 1

2

1

2

d

dl
R




 

Вообще говоря, расстояние l можно определить по фотографии рейки, рас-

положенной вертикально в точке касания 1 или 2, для чего необходимо предва-

рительно выполнить соответствующую калибровку фотокамеры. 

В заключение отметим, что в «линейном» способе для измерения расстоя-

ния d с помощью лазерной рулетки, например, HD150 достаточно воспользо-

(16) 



ваться её клавишей «min‐max», проведя лазерным пучком по образующей соору-

жения слева направо от точки 5. Минимальное расстояние на дисплее покажет 

величину d с точностью 2–3 мм заявленной в паспорте этой рулетки. 

Что касается расстояния l, то ошибка его измерения в основном будет зави-

сеть от точности определения положения точек касания 1 и 2 (рис. 5) на попереч-

ном сечении сооружения. Поэтому, для обеспечения требуемой точности опре-

деления радиуса R, можно поступать следующим образом. Вначале «линейным» 

способом получить R и найти величину n = (d+R)/R, фигурирующую в формулах 

(10) и (12), а затем «фотографическим» способом определить h и вычислить R. 

Среднюю квадратическую ошибку mn в зависимости от ошибок md и mR можно 

определить по формуле: 

.
1 2

2

2
2

2

2





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


 Rd m
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Результаты вычислений по формуле (17) для радиуса R равного 5 м, md = 5 

мм и при различных значениях mR иллюстрируются графиками на рис. 14. 

 
Рис. 14. Графики зависимости ошибки mn от ошибок md = 5 мм 

и mR =50, 100, 150, 200 и 250 мм 

Эти данные свидетельствуют, что даже при больших значениях mR ошибки 

mn практически не окажут влияния на точность определения радиуса «фотогра-

фическим» способом. 

(17) 



Причём с помощью формулы (2), задавая mR и md, можно определить необ-

ходимую точность измерения расстояния l, а по графикам на рис. 14 по выбран-

ному значению mn определить оптимальное количество «отстояний» n для лю-

бого радиуса. 
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