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Аннотация: в данной статье рассмотрена актуальная в молекулярной 

спектроскопии квантовомеханическая задача о гармоническом осцилляторе. 

Для получения ее решений и их исследования применялись современные пакеты 

вычислительной математики. Авторами предполагается внедрить разработку 

в учебный процесс вуза по курсу «Теоретические основы микроэлектроники». 
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Объектом исследования выбрана микрочастица в поле с параболическим 

потенциалом U(x). Уравнение Шредингера с таким потенциалом описывает ма-

лые колебания молекулярных связей. Соответствующая краевая задача для УШ за-

писывается как: 
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В задаче (1) параметр k осмысливается как силовая постоянная. Чтобы ре-

шить это уравнение, предположим вид решения: 
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где  = (m k)1/2/ , m – масса молекулы. Подстановкой (2) в (1) получаем: 
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Этому уравнению удовлетворяют многочлены порядка n – 1, если выполня-

ется условие 021
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m

k
 - частота собственных колебаний. Полученные (см. рисунок 1) решения 

известны как многочлены Эрмита порядка n. 

 

Рис. 1. Модель гамонического осциллятора в Mathematica 

 

В общепринятых обозначениях полученное решение краевой задачи для 

УШ (1) имеет вид: 
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и показано на рисунке 2. 

 

Рис. 2. Собственные значения и собственные функции 

УШ для гармонического осциллятора 
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После важной для физиков нормировки, т. е. обеспечения 
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получаем окончательное выражение для собственной функции: 
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, n = 1, 2, ….  (5) 

С позиций квантовой физики модель гармонического осциллятора несовер-

шенна, по меньшей мере, в двух отношениях: реальные молекулярные связи не 

бесконечно прочны, а переходы происходят не только между соседними кванто-

выми уровнями. Эти недостатки устраняются комбинированными потенциа-

лами, обеспечивающими притяжение бесконечно разнесенных атомов и оттал-

кивание близко сведенных. Соответствующая модель будет рассмотрена в сле-

дующей публикации. 
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