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Аннотация: расчет точных параметров сложных кривых требуется для 

многих машиностроительных задач, но сделать это в современной геометрии 

затруднительно. На основе ранее разработанного метода прямых произволь-

ных линейных преобразований и теории симметрий было получено новое реше-

ние для четырех групп. Вместе с тем, для некоторых преобразований расчеты 

получались некорректные. Применив методы геометрического моделирования, 

выявлена новая особенность линейных преобразований. 
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Точность расчета геометрических параметров является самой важной харак-

теристикой мехатронных систем. Особенно она критична для нано-роботов, из-

делий точного машиностроения. Ранее была представлена информационно-линг-

вистическая интерпретация геометрии [1–3], построенная на теории подобий 

Лейбница – Г. Вейля с расширением количества симметрий (автоморфизмов) 

предложенных Дьедонне. Наиболее важнейшим вопросом для применения в ма-

шиностроении является: насколько предлагаемая интерпретация позволяет 

точно рассчитывать геометрическую модель, как для конических сечений, так и 

для более сложных (жордановых) кривых. 

Разница между классическим и новым методами [4; 6] покажем на примере 

плоского шатуна. Сиситема параметрических уранений, описавающая 
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положений очки вне оси шатуна будет 
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Как видно из результатов, решение новым методом позволяет провести 

дальнейшие математические расчеты, например, решить дифференциальное 

уравнение. 

 

Рис. 1. Кинематический механизм 
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H4 , где , ,k m n R  метод применим для жордановых кривых, но 

эксперименты на языке Autolisp 2007 показали, что не всегда. Было 

предположено [5], что характеристическое Tv = λv  изменяет результирующий 
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вектор и он принадлежит множеству 
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 в соответствии с пере-

ставной симметрией. 

Экспериментальные исследования подтвердили правильность данной тео-

рии. Эксперименты проводились независимо обоими соавторами статьи, но с 

разными преобразованиями, из которых 32 совпадали. В экспериментах рассчи-

тывался мехатронный механизм, состоящий из трех окружностей (эллипсов). 

Вид кинематического механизма представлен на рисунке 1. 

Исследование получает поддержку по гранту ГЗ/ТВГ 14(01.10) Минобрна-

уки РФ. 
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