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Аннотация: решение геометрических задач всегда вызывает затруднения 

у учащихся. Действенную помощь в нахождении элементов в треугольнике смо-

гут оказать сведения об особых точках и линиях в треугольниках, которые 

стали называть замечательными точками. Представленный материал позво-

лит формировать у учащихся метапредметные универсальные действия при ре-

шении геометрических задач. 
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В процессе изучения геометрического материала одной из часто встречаю-

щихся геометрических фигур является треугольник. Казалось бы, что о треуголь-

никах известно все: классификация, свойство углов и сторон, формулы для вы-

числения площадей, радиусы вписанных и описанных окружностей и т. п. Дей-

ствительно, геометрия начинается с треугольника, так сложилось исторически и 

уже два с половиной тысячелетия эта фигура является настоящим символом гео-

метрии; но он не столько символ, сколько -атом геометрии [5]. 

Его так можно назвать потому, что предшествующие ему понятия – такие 

как точка, прямая и угол – это неясная и неосязаемая абстракция вместе со свя-

занным с ней набором теорем и задач. Удивительно то, что треугольник и до 

наших дней является неисчерпаемым объектом изучения, даже несмотря на всю 

свою кажущуюся простоту. Даже сегодня никто не осмелится сказать, что знает 

все его свойства. 
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Именно поэтому в современном мире школьная геометрия может стать ин-

тересней и гораздо содержательней, когда в ней начинается изучение треуголь-

ника на глубоком и всестороннем уровне. 

Ввиду многообразия треугольника как объекта изучения – а, значит, и ис-

точника различных методик его изучения – можно подбирать и разрабатывать 

материал для изучения геометрии замечательных точек треугольника. А при 

подборе такого материала нельзя ограничиваться лишь замечательными точками 

и линиями, которые предусмотрены в школьной программе Федеральным госу-

дарственным образовательным стандартом (ФГОС). 

В рамках школьной программы по геометрии идёт рассмотрение только ма-

лой части замечательных точек и линий треугольника – это: 

‒ точка пересечения серединных перпендикуляров к сторонам треугольника 

(центр описанной окружности); 

‒ точка пересечения биссектрис центр вписанной окружности – (инцентр); 

‒ точка пересечения медиан; 

‒ точка пересечения высот треугольника – ортоцентр. 

Есть еще ряд утверждений, связанных с вершинами треугольника и замеча-

тельными точками треугольника, например, если две из замечательных точек 

треугольника совпадают, то треугольник равносторонний; если вершина тре-

угольника и две замечательные точки принадлежат одной прямой, то треуголь-

ник равнобедренный. 

Изучение данной темы начинается в 8 классе, в учебнике Л.С. Атанасяна 

предлагаются следующие задачи на данную тему [2]: 

Задача 1. Из точки М биссектрисы неразвернутого угла О проведены пер-

пендикуляры МА и МВ к сторонам этого угла. Докажите, что АВ⊥ОМ. 

Даная задача демонстрирует связь свойств биссектрисы угла и высот тре-

угольника. 

Задача 2. Высоты АА1 и ВВ1 равнобедренного треугольника АВС, проведен-

ные к боковым сторонам, пересекаются в точке М. Докажите, что прямая МС – 

серединный перпендикуляр к отрезку АВ. 
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В данной задаче присутствуют сразу две замечательные точки – точка пере-

сечения серединных перпендикуляров и точка пересечения высот. Пользуясь 

теоремой о пересечении высот учащиеся смогут решить задачу. 

Задача 3. Докажите, что если в треугольнике АВС стороны АВ и АС не 

равны, то медиана АМ треугольника не является высотой. 

В задаче присутствует одна замечательная точка – точка пересечения ме-

диан. Данную задачу ученики могут решить «методом от противного», т.е. пред-

ставить, что медиана АМ – высота, а дальше, пользуясь теоремой о серединном 

перпендикуляре, решить задачу. 

Задача 4. Даны угол и отрезок. Постройте точку, лежащую внутри данного 

угла, равноудаленную от его сторон и равноудаленную от концов данного от-

резка. 

Эта задача на построение, ученики должны не только находить то, что тре-

буется в задаче, но и уметь выполнять построения. Им необходимо построить 

биссектрису заданного угла и серединный перпендикуляр к данному отрезку, так 

они получат искомую точку. 

В ходе дальнейшего изучения геометрического материала можно предло-

жить учащимся задачи посложнее или задачи с нестандартным решением. Но все 

задания учебного материала ориентированы на достижение личностных резуль-

татов, в них предлагается найти и обосновать его решение, опираясь только на 

факты. 

А работа с математическим содержанием учит уважать и принимать чужое 

мнение, если оно обоснованно. При решении геометрических текстовых задач 

наиболее эффективно происходит формирование регулятивных и познаватель-

ных УУД. 

Для развития регулятивных УУД наиболее эффективными заданиями будут 

являться текстовые задачи, так как работа с ними полностью отражает алгоритм 

работы по достижению поставленной цели. Формирование познавательных УУД 

будет формироваться, как вариант, через поиск разных способов решения задач, 
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формулировать несложные выводы на основе прочитанного текста, сравнивать 

информацию. 

Спрашивается, может быть этого материала достаточно, чтобы выполнять 

нужные подсчеты в треугольниках? 

Если говорить об обязательных минимальных знаниях в области геометрии 

в целом, то этого, возможно, и достаточно. Но если речь идет о внедрении в об-

разовательный процесс ФГОС, нацеленных на формирование исследовательских 

качеств, развитие способностей самостоятельно добывать и применять информа-

цию, то этого недостаточно. 

Действительно, с введением стандартов второго поколения особую значи-

мость приобретает развитие исследовательских умений учащихся, формирова-

ние и поддержание интереса к обучению. 

Многие ученые – методисты связывают исследовательскую деятельность 

учащихся при обучении геометрии с решением исследовательских задач, либо с 

дополнительной работой над задачей [3; 8]. 

В.А. Сластенин определяет сущность исследовательского метода как «спо-

соб организации поисковой, творческой деятельности учащихся по решению но-

вых для них проблем». Исследовательский метод предполагает самостоятельное 

решение познавательной задачи, подбор необходимых методов решения под ру-

ководством учителя. В процессе исследовательской деятельности наиболее 

полно проявляются инициатива, самостоятельность и творчество [6]. 

В этом плане особый интерес вызывают задачи, которые предлагаются при 

решении итоговой аттестации учащихся в виде тестовых заданий (ОГЭ и ЕГЭ). 

Рассмотрим несколько таких задач. 

Задача 5. Катеты прямоугольного треугольника равны 9, 12 и гипотенуза 

равна 15. Найдите расстояние между точкой пересечения биссектрис и точкой 

пересечения медиан [1]. 
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Рис. 1 

 

Решение 

М – точка пересечения медиан, О – центр точка пересечения биссектрис и 

центр вписанной окружности (рис.1). Выразим его: 
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 cbar  

OF = 3, CF = 3, BF : BC = 2:3, но и BM : BB1 = 2 : 3, значит точка М принад-

лежит прямой OF, которая параллельная В1С. Из подобия треугольников ВВ1С и 

BOF имеем: 

,
1CB

MF

DC

BF
  ,

69

6 OF
  MF = 4, OF = 3, MO = 1. 

Ответ: 1. 

Задача 6. В треугольнике ABC медиана AK пересекает медиану BD в точке 

L. Найдите площадь треугольника ABC, если площадь четырехугольника KCDL 

равна 5 [4]. 

 

Рис. 2 
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Решение 

Медианы треугольника делятся точкой пересечения в отношении 2:1, считая 

от вершины, поэтому .
3

1
AKKL   Поскольку у треугольников BKL и BKA общая 

высота (отношение площадей треугольников с 

равными высотами равно отношению их оснований), проведенная из вер-

шины В, то 
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1
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Ответ: 15. 

Задача 7. Через точку пересечения медиан треугольника ABC проходит пря-

мая, пересекающая стороны AB и AC. Расстояния от вершин В и С до этой прямой 

равны b и с соответственно. Найдите расстояние от вершины А до этой прямой 

[7]. 

 

Рис. 3 

 

Решение 

Пусть точка М – точка пересечения медиан треугольника АВС (рис. 3); К – 

середина стороны ВС; E, P, Q и F – проекции точек соответственно В, А, К и С 

на данную прямую. Поскольку АК – медиана треугольника АВС, а М – точка пе-

ресечения. 
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медиан этого треугольника, то АМ : МК = 2:1. 

KQ – средняя линия прямоугольной трапеции BEFC (или прямоугольника, 

если b = c). 

Поэтому .
22

cbCFBE
KQ





  

Из подобия прямоугольных треугольников KQM и APM следует, что 

.2
2
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
  

Ответ: b+c. 

Определенный интерес представляют другие замечательные точки и линии, 

которые названы в честь ученых-математиков. Вот некоторые из них: 

1. Прямая Эйлера (швейцарский, немецкий и российский математик и ме-

ханик) определена как прямая, проходящая через центр описанной окружности и 

ортоцентр треугольника. 

2. Точка Жергонна (Жозеф Диас Жергонн французский математик и гео-

метр) – точка пересечения отрезков, соединяющих вершины треугольника с точ-

ками касания противоположных сторон вписанной окружностью. 

3. Прямая Симпсона (Томас Симпсон – английский математик). Основания 

перпендикуляров, опущенных из точки P описанной окружности треугольника 

ABC на его стороны или их продолжения, лежат на одной прямой. 

Использование таких точек возможно на дополнительных занятиях с уча-

щимися, проявляющими повышенный интерес с геометрии, которые готовятся к 

сдаче математики профильного уровня. Такие задачи способствуют формирова-

нию исследовательских навыков, повышают интерес к математике. 
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