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EXTENSIONS OF THE EINSTEIN FIELD EQUATIONS  

AND THEIR SOLUTIONS 

Аннотация: в данной монографии предпринята попытка полностью отка-

заться от понятия «масса», исследователем предложен вариант построения 

безмассовой геометрофизики. В работе рассмотрены взаимосвязи между раз-

личными решениями вакуумных уравнений Эйнштейна. Предложено расширен-

ное вакуумное уравнение Эйнштейна и приведены его решения. На основании ре-

шений вакуумных уравнений предложены метрико-динамические модели сфери-

ческих вакуумных образований различного масштаба, среди которых выделены 

практически все элементарные «частицы», входящие в состав Стандартной 

модели. 

Ключевые слова: вакуум, вакуумное уравнение Эйнштейна, Риччи-плоское 

пространство, сигнатура метрики, вакуумная протяженность, Стандартная 

модель. 

Abstract: according to the researcher one of the aims of geometrodynamics is to 

eliminate the concept of mass as a fundamental property. The author presents a prom-

ising approach to achieving this end. In order to do this, the researcher considers the 

interface between different solutions of the Einstein field equations, and constructs an 

extension of these equations and their solutions. This forms the basis of a metric-dy-

namic model of particles of varying sizes, including virtually all elementary particles 

that are part of the Standard Model. 

Keywords: vacuum, Einstein field equation, the Ricci-flat space, the signature of 

a metric of the vacuum, the Standard Model. 

Note: the concept of the geometrophysics is entered in (Vladimirov 2005). 

A note on terminology: New concepts are introduced using either terms coined by 

the author, or new usages of words already in use for similar concepts. At appropriate 
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places in the text, we call the attention of the reader to the new terminology with ex-

planations preceded by the word «terminology» in bold. These terms are tentative, and 

the author welcomes suggestions for improvements on the terminology. 

1. The first Einstein field equation and its solutions 

1(a) Consider the Einstein field equations: 
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where gij are metric tensor components; 
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R = gikRik represents scalar curvature; (1.3) 
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1
 are Christoffel symbols. (1.4) 

The solutions to (1.1) are considered in many works on modern differential ge-

ometry and general relativity. However, no work is known to the author which dis-

cusses the relationship between the different solutions of these equations in detail. We 

propose to fill this gap. 

Combining (1.1) with gik, we obtain (Novikov and Taimanov 2014): 
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     (1.5) 

because ngg ik

ik   of the number of spatial dimensions. 

For any n-dimensional space (except for n = 2), Equation (1.5) can only be per-

formed when R = 0. Therefore, for n = 4, Equation (1.1) becomes 

0ikR .       (1.6) 

The solutions to (1.6) are best expressed, as a rule, in a spherical coordinate sys-

tem in the form of metrics. Before we present these metrics, we need to insert a note 

about our terminology. 

1(b) Terminology: The term «signature» used here is an extension of the usual 

means to determine where a metric component is positive definite or negative definite. 



Scientific Cooperation Center "Interactive plus" 
 

3 

Content is licensed under the Creative Commons Attribution 4.0 license (CC-BY 4.0) 

More broadly, suppose a space S of points s=(x0,x1,x2,x3) has several metrics or pseu-

dometrics defined on it, such that each metric or pseudometric [ds]i is described by 

[ds]i
2= a0 f1(s,p)dx0

2 + a1 f2(s,p)dx1
2 + a2 f3 (s,p) dx2

2 + a3 f3 (s,p)dx3
2, where for  

i {0,1,2,3}, fi(s) are positive definite functions defined on S, p are given parameters, 

and ai {0,–1,1}. (For convenience, we shall drop «or pseudometric» and the mention 

of the parameters in the rest of this section.) Then, if this is a quadratic (metric) form, 

we form the ordered tuple (a0, a1, a2, a3), whereby –1 is abbreviated «–» and 1 is ab-

breviated «+» (0 retains its name). We then term it a «signature» of the metric. If, on 

the other hand, the defining equation of each of the metrics is a linear (affine) form or 

«colored» quaternion («colored» to be explained later), we term it a «stignature» to 

emphasize this difference. However, in what follows, the rules for signatures extend in 

a natural way to stignatures. 

Suppose further that several metrics are defined on the region in question such 

that they only differ in the sign of their coefficients. This would allow a set of 64 pos-

sible metrics in such a set. 

Now we use the fact that the sum of two metrics yields another metric. To com-

plement this situation, we can define an operation, a component-wise addition: if there 

are two signatures in the set (a0, a1, a2, a3) and (b0, b1, b2, b3), then (a0, a1, a2, a3) +̃ 

(b0, b1, b2, b3) = (a0+b0, a1+b1, a2+b2, a3+b3) if and only if (a0+b0, a1+b1, a2+b2, a3+b3); 

that is, the sum of the signatures of metrics is the signature of the sum of the corre-

sponding metrics. Such a set of 64 signatures will form a group under +̃.We henceforth 

drop the tilde, using + for both normal addition and this operation, where the differ-

ence will be clear from the context. 

We can also form various substructures. For example, the aforementioned differ-

ence between a signature and a stignature is one distinction. Restrictions of the fact 

that the metrics are defined on spacetime introduces further restrictions. Furthering 

such considerations, the functions we will be using will fulfill the condition that 

a0×a1×a2×a3 = 0 if and only if a0=a1=a2=a3= 0. (The reason for this will become appar-

ent later in the paper. Since the resulting substructure of only 17 elements no longer 

forms a group under the same operation as before, lacking closure, further restrictions 
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on the operation needs to be made to enjoy the consequences of the group structure.) 

Other restrictions will limit the number of elements even further, or require further 

structure. Taking all of these possibilities together into a single structure is beyond the 

scope of this paper, but this algebra, which we term the «Algebra of signatures», is 

more fully outlined in an article by Gaukhman (Gaukhman 2007), and applied in nu-

merous subsequent papers by the same author as listed in the bibliography. These are 

presently only available in Russian, but the author intends to bring this to a wider 

audience over a series of future articles in English in the near future. 

In this paper, most of the metrics will be expressed so that the spatial portion is 

expressed in spherical coordinates (r, , ), so that x0  t, x1  r, x2 , x3  , and the 

metric is expressed as: 

ds(–)2 = a1 f1(t)dt2 + a2 f2(r)dr2 + a3 f3 (r) d 2 + a4f4 (r,)d 2. 

For this reason, we shall refer to the regions of vacuum on which the metrics are 

defined as «spherical formations». The fact that measurements of most particles are 

spherically symmetrical is a further support for the intuitive feel of this term. 

1(c) We return to: 

ds(–)2 = ес2dt2 – еdr2 – r2d 2 – r2sin2 d 2 with the signature (+ – – –), (1.7) 

ds(+)2 = -ес2dt2 + еdr2 + r2d 2 + r2 sin2 d 2 with the signature (– + + +), (1.8) 

where  and  are the sought-after functions of t and r respectively. 

As a result of the substitution of covariant and contravariant components of the 

metric tensor of the metric (1.7) in equation (1.6) for fixed (i.e., time-independent) 

vacuum states, we obtain a system of three equations (Landau and Lifshitz 1988): 

 = – ;       (1.9) 

–е  ( /r + 1/r2) + 1/r2 = 0;     (1.10) 

 +  2 + 2 /r = 0.     (1.11) 

The differential equation (1.10) has three solutions: 

1 = ln(h1+ h2 /r), 2 = ln(h1 – h2 /r), 3 = h3,    (1.12) 

where h1, h2, h3 are integration constants. 

Equation (1.11) also has three solutions: 
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 1 = ln(1+ b/r),  2 = ln(1 – b/r),  3 = 0,    (1.13) 

where b is a constant of integration. 

If h1 = 1, h2 = b, and h3 = 0, the solutions to (1.12) and to (1.13) coincide. 

Substituting the three possible solutions (1.13) in the metric (1.7) with (1.9) we 

obtain the three metrics with the same signature (+ – – –): 

dsa
(–)2 = (1– r0 /r)с2dt2 – (1– r0 /r) –1dr2 – r2d 2 – r2sin2 d 2,  (1.14) 

dsb
(–)2 = (1+ r0 /r)с2dt2 – (1+ r0 /r) –1dr2 – r2d 2 – r2sin2 d 2,  (1.15) 

dsc
(–)2 = с2dt2 – dr2 – r2d 2 – r2sin2 d 2.    (1.16) 

where r0 = b is the radius of the corresponding closed sphere. 

By doing the same operations with the components of the metric tensor of the 

metric (1.8), we obtain the following three metrics, also satisfying Equation (1.6), but 

with opposite signature (– + + +): 

dsa
(+)2 = – (1– r0 /r)с2dt2 + (1– r0 /r) -1dr2 + r2d 2 + r2sin2 d 2,  (1.17) 

dsb
(+)2 = – (1+ r0/r)с2dt2 + (1+ r0 /r) -1dr2 + r2d 2 + r2sin2 d 2),  (1.18) 

dsc
(+)2 = – с2dt2 + dr2 + r2d 2 + r2sin2 d 2).    (1.19) 

Each of the metrics (1.14) through (1.19) is irreducible to the others; together this 

is called a generalized Schwarzschild metric. 

Metrics (1.14) through (1.19) describe the state of the same region of the vacuum. 

Therefore we consider different variants of their averages, in spite of the fact that equa-

tion (1.6) is non-linear; in general, in such cases the sum of the solutions is not itself a 

solution. 

If the centers of the metrics (1.14) through (1.16) and (1.17) through (1.19) coin-

cide, evidently they will sum to zero: 

dsa
(–)2+dsb

(–)2+dsc
(–)2+dsa

(+)2+dsb
(+)2+dsc

(+)2 = 0∙с2dt2 +0∙dr2 + 0∙ d 2+ 0∙sin2 d 2= 0. 

(1.20) 

The resulting metric is: 

ds(0)2 = gij
(0)dxi

 dxj
,      (1.21) 



Центр научного сотрудничества «Интерактив плюс» 
 

6     www.interactive-plus.ru 

Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0) 

where ,
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A vacuum state is a trivial solution of (1.6). 

Thus, contrary to expectation, the addition of the six metrics (1.14) through (1.19) 

leads to the production of additional solutions of (1.6). 

Let us now consider the arithmetic average of the two metrics (1.14) and (1.15) 
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The distance between two points r1 and r2 in a region with signature (+ – – –) is 

determined by the following expression in General Relativity: 
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By substituting g11
(–) into the average of the metric (1.23), we obtain: 
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First we find the value of the interval between the points r1 = 0 and r2 = r0: 

00

2
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2 10 irrrrr
r

 .    (1.26) 

 

Fig. 1.1. Air bubble in liquid 
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The length of this segment is equal to the radius of the cavity r0, and the vacuity 

of this result suggests that there is no vacuum cavity. Outside the cavity and from r1 = 

r0 to r2 = , we have: 

2

0

22

0

2

12
0

rrrrr
r




.    (1.27) 

 

Fig. 1.2. Graph of the function lr
(–): relative length of the vacuum in the outer shell 

surrounding the spherical cavity. Executed in MathCad 14 for r0 = 2 

 

In the absence of deformation, the distance between points r2= and r1 = r0 is equal 

to  – r0, and in this case this is equal to (1.27). The difference between these segments 

is approximately equal to   00
2

0
2 rrr  . (1.28). 

This result shows that the average length of the vacuum on the interval ]r0, [ is 

compressed by an amount  r0 in all radial directions due to the fact that it was forced 

out of the cavity radius (1.28). This result is similar to the air bubble in the liquid (Fig-

ure 1.1). The difference between the original uncurved local area vacuum state and its 

current (curved) status is determined by the difference expressed in (1.29). (Sedov 

1994, Gaukhman 2004). 

ds(–)2 – ds0(–)2 = (gij
(–) – gij

0(–)) dxi
 dxj,      (1.29) 

where the gii
0(–) make up the components of the metric tensor in the uncurved area of 

the vacuum. 

The relative lengthening of the one of side of the vacuum region is expressed by 
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which implies: 

ds(–)2 = (1 + l(–))2 ds0(–)2,       (1.31) 

and: 
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The uncurved state of the section under consideration in a vacuum state is given 

by the metric (1.16). Therefore, substituting components gii
0(–) and gii

(–), respectively, 

from (1.16) and (1.23) to (1.32), we obtain: 
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The graph of the functions lr
(–) is shown in Figure 1.2. At r = r0, the function tends 

to infinity, and when r < r0 it becomes the complex function. This once again confirms 

that, within the scope of [0, r0], there is a cavity, as in Figures 1.1 and 1.2. 

Thus, averaging the metrics (1.14) and (1.15) leads to the metric-dynamic descrip-

tion of the stable formation of a vacuum-type «air bubble in a liquid», while the metrics 

(1.14) or (1.15) alone do not lead to such results. 

We note the following important fact. The average quadratic form (1.23): 

dsab
(–)2 = 

2
1 (dsa

 (–)2+ dsb
 (–)2)     (1.34) 

naturally evokes the Pythagorean theorem a2 + b2 = c2. This means that the line seg-

ments ( 2
1 )1/2dsa

(–)
 and ( 2

1 )1/2dsb
(–) are always mutually perpendicular with respect to 

each other dsa
(–)

 dsb
(–) (Figure 1.3). To illustrate, a double helix (as in Figure 1.4 below, 

looking like a straightened-out version of the typical simplified diagram of a DNA 

double helix) can be projected onto any plane containing the axis of the plane such that 

the tangents of the resulting curves are perpendicular to one another at the points of 

intersection. (That is, projecting the two curves {(x,y,z): x = rcos t, y = rsin t, z = kt} 

and {(x,y,z): x = rcos t, y = rsin t, z = k(t + )} onto the x-z plane, the tangents where 
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the resulting plane curves meet at z = 0 are perpendicular to one another). By sym-

metry, this applies to all planes containing the z axis. 

 

Fig. 1.3. Values of segments dsa
(–)

 and  dsb
 (–) 

 

 

Fig. 1.4. A double helix can be projected onto a plane such that the tangents  

of the resulting curves are perpendicular to one another at the points of intersection 

 

Thus, the average metric (1.23) corresponds to the segment «braid», consisting of 

two strands coiled around one another, sa
(–)

 and sb
(–), whose projections are perpendicu-

lar to one another. This section of the «double helix» can be described as a complex 

number: 

dsab
 (–)= 2

1 (dsa
 (–)+idsb

 (–)),    (1.35) 

which is equal to the square root of the module (1.34). 
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In connection with the above, we will call the averaged metric a «k-braid» (where 

k represents the number of threads). In particular, the averaged metric (1.23) is called 

«2-braid» as it is «coiled» from 2 lines dsa
(–)

 and dsb
(–). 

Analogously, averaging metrics (1.17) and (1.18) leads to a «2-antibraid». 

,sin)( 222222
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dtcdsdsds baab 


 

 
(1.36) 

which describes the metric-dynamic state of the stable formation of a vacuum-type «air 

bubble in a liquid», but is a complete antithesis of the vacuum formation, describing a 

2-braid (1.23). 

In such a case it behooves us to emphasize that the distance between two points 

r1 and r2 in the region with signature (– + + +) is determined by the expression 

drgrr

r

r




2

1

)(

1112
. 

The 2-braid (1.23) and 2-antibraid (1.36) fully complement one another, thereby 

yielding a solution of (1.21): dsab
(–)2 + dsab

(+)2 = ds(0)2. If we conditionally assume that 

the 2-braid (1.23) describes the metric-dynamic state of a stability «bulge» in the vac-

uum region (Figures 1.1 and 1.2), the 2-antibraid (1.36) describes exactly the same 

concavity to the same extent. 

Substituting the components gii
0(–) of metric (1.16) component and g11

(–) of the 

metrics (1.14) or (1.15) into equation (1.32) leads to the absurd results shown in Fig-

ure 1.5. 

Note: realized for r0=2 using MathCad 14. 

This once again confirms that averaging metrics (1.14)  (1.15) and/or (1.17) 

 (1.18) makes sense. 

Now, based on development elsewhere (Gaukhman 2007/2017), we will discuss 

the metric-dynamic interpretation of zero metric tensor components g00
(–) and g00

(+). 
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а) Graph of the function 
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Fig.1.5 

 

We introduce the usage of the terms «external» and «internal» (and related terms: 

outer, outside, inside, internal, etc.) to describe the same vacuum region by two metrics 

with mutually opposite signatures. The lengths in the local «external» and «internal» 

vacuum regions are given by pseudo-Euclidean metrics (1.16) and (1.19) 

ds(–)2= с2dt2 – dr2 – r2d 2 – r2sin2 d 2 = сdtсdt– dxdx– dydy– dzdz, (1.37) 

ds(+)2= – с2dt2 + dr2+r2d 2+r2sin2 d 2 = – сdtсdt+dxdx+dydy+dzdz. (1.38) 

We introduce the terms for linear (affine) forms: 

ds(–) = сdt– dx– dy– dz – «Cover» on the outer side of the vacuum;            (1.39) 

ds(–) = сdt– dx– dy– dz – «Inversion» of the outer side of the vacuum;   (1.40) 

ds(+) = – сdt+ dx+ dy+ dz – «Cover» of the inner side of the vacuum;          (1.41) 

ds(+) = – сdt+ dx+ dy+ dz – «Inversion» of the inner side of the vacuum. (1.42) 

Let the «cover» and «inversion» of one side of the vacuum move relative to their 

axially fixed state along an axis x with the same velocity vx, but in different directions. 

This is formally expressed by the coordinate transformation: 

t= t, x = x + vx t, y = y, z= z – For the «cover»,   (1.43) 

t= t, x = x – vx
 t, y= y, z= z – For the «inversion».  (1.44) 
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A consequence of the equality of the velocities vx in the modules of the «covers» 

and «inversions» due to the vacuum condition is that for every movement in the vac-

uum region there is a corresponding contrary movement (Gaukhman 2007/2008/2017). 

Differentiating (1.43) and (1.44) and substituting the results of the differentiation 

to (1.37) and (1.38) in spherical coordinates we obtain metrics 

dsv
(–)2= (1+ vr

(–)2/с2)с2dt2 – dr2 – r2d 2 – r2sin2 d 2,   (1.45) 

dsv
(+)2= – (1+ vr

(+)2/с2)с2dt2 + dr2 + r2d 2 + r2sin2 d 2,   (1.46) 

describing the kinematics of translational motion of the «external» and «internal» as-

pects of the local area vacuum extension. It then is under the vacuum conditions: 

dsv
(–)2 + dsv

(+)2 = ds(0)2 = 0,     (1.47) 

The movement involved is compensated for by the contrary movement. 

Compare g00
(–) into the metrics (1.14) and (1.15) with g00

(–) in the metric (1.45) 

and g00
(+) in the metrics (1.17) and (1.18) with g00

(+) in the metric (1.46) respectively 

obtain: 

for the metric (1.14): 1– r0/r = 1+ vra
(–)2/c2 → vra

(-)2 = – c2r0/r → vra
(–) = (– c2r0/r)½; 

(1.48) 

for the metric (1.15): 1+ r0/r = 1+ vrb
(–)2/c2 → vrb

(-)2 = c2r0/r → vrb
(-) = (c2r0/r)½ ; (1.49) 

for t e metric (1.17): – (1– r0/r) = – (1+ vra
(+)2/с2) → vra

(+)2 = – c2r0/r → vra
(+) =  

(– c2r0/r)½ ; (1.50) 

for the metric (1.18): – (1+ r0/r) = – (1+ vrb
(+)2/с2) → vrb

(+)2 = c2r0/r → vrb
(+) =  

(– c2r0/r)½. (1.51) 

These results suggest that the zero components g00
(-) of the metrics (1.14) & (1.15) 

and g00
(+) of the metrics (1.17) & (1.18) describe the motion of the relevant sub-layer 

vacuum region with speeds vr, as in (1.48) through (1.51), relative to their stationary 

state metrics given by (1.16) & (1.19). 

Although we have movement, precisely what is moving in the vacuum state is not 

known, because there is no mechanism in the description of matter in geometrophysics 

to detect it. However, for convenience, in a vacuum such processes can be compared 

with the processes in the hypothetical layer of vacuum between two solids pressed to-

gether in a elastoplastic fluid. 
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Terminology. We coin (as in (Gaukhman 2007/2008/2009/2017)) the terms «sub-

cont», abbreviating «substantial continuum», and, correspondingly, «antisubcont» to 

designate the components of such an environment. The layers of the vacuum region are 

given in table 1.1. 

Table 1.1 

Metric/ 

signature 

Number  

of metric 
Meaning of coined terms Side of vacuum 

dsa
(–)2  

(+ – – –) 
(1.14) 

«a-subcont» – the outer side of the outer side 

of the vacuum region 

E 

X 

T 

E 

R 

N 

A 

L 

dsb
(–)2 

(+ – – –) (1.15) 
«b-subcont» – the inner side of the outer side 

of the vacuum region 

dsс
(–)2 

(+ – – –) 
(1.16) 

original flat outer side of the vacuum region 

(definite) 

    

dsa
(+)2 

(– + + +) 
(1.17) 

«a-antisubcont» – the outer side of the inner 

side of the vacuum region 

I 

N 

T 

E 

R 

N 

A 

L 

dsb
(+)2 

(– + + +) 
(1.18) 

«b-antisubcont»- the inner side of the inner 

side of the vacuum region 

dsc
(+)2 

(– + + +) 
(1.19) 

original flat inner side of the vacuum region 

(definite) 

 

Averaging the velocities given by (1.48) and (1.49), we find that the general 

movement of affine layers outside of the vacuum region (subcont) describes the aver-

age speed 

vrab
(–)(r) = ½[(c2r0/r)½ + i(c2r0/r)½],    (1.52) 

and the velocity average (1.50) and (1.51), leads to the average velocity 

vrab
(+)(r) =½[(c2r0 /r)½ + i(c2r0 /r)½].    (1.53) 

which describes the average (total) movement of the affine layer of the inside of the 

vacuum region (of the antisubcont). 

The modules of the complex functions (1.52) and (1.53) are equal 

|vrab
(–)(r)| = c (r0 /r) ½,      (1.54) 

|vrab
(+)(r)| = c (r0 /r) ½,      (1.55) 

2
2

2
2
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which shows that the average velocity in the affine layers of the outer and inner sides 

of the vacuum region (subcont and antisubcont) with r0 = r is close to 
√2

2
𝑐, with c – the 

speed of light, but as the radius r increases greater than r0, the velocity decreases in 

proportion to 1/r½, approaching zero. 

However, the squares of the velocities (1.48) and (1.49) are equal and opposite to 

one other vra
(–)2= – vrb

(–)2. Therefore, in the 2-braid (1.23), g00
(–) = 1. 

Similarly, the squared velocities (1.50) and (1.51) are equal and opposite each 

other vra
(–)2 = –vrb

(–)2. Therefore, in the 2-antibraid in (1.36), g00
(+) = 1. 

This fact leads to the stability of the considered vacuum relation, since the con-

sidering the amount of «subcont-flow» (similar to, but not to be confused with, flux), 

the amount of a-subcont «flowing in» is equal to the amount of b-subcont «flowing 

out». 

It should be noted that some additive combinations of metrics (1.14) through 

(1.16) and/or (1.17) through (1.19) are different solutions of the nonlinear Einstein field 

equations (1.6), leading to a more balanced metric-dynamic description of the local 

centrally symmetric vacuum formation than any one of them individually. The kine-

matics and dynamics of the layers and the inside of the vacuum regions are discussed 

in detail elsewhere (Gaukhman 2007/2008/2009/2017). 

2. The second vacuum Einstein field equations and their solutions 

Considering the identity: 

j gik = 0,       (2.1) 

,0)
2

1
(  ikikj RgR      

 
(2.2) 

Einstein added (1.1) another term (the so-called term): 

,0
2

1
 ikikik gRgR

     
(2.3)

 

where  = ± 3/ra
2 = constant, ra is the radius of the spherical vacuum formation. 

In this case: 

,0
22

1










 nR
n

RgRgRg ikikik
ik    (2.4) 
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whence: 

,
2

2





n

n
R        (2.5) 

whereupon the equation (2.3) takes the form: 

.0
2

2

2






 ikikikikik g

n
Rgg

n

n
R    (2.6) 

For 4-dimensional space: n = 4, R = 4, equation (2.6) takes the most simple form 

0 ikik gR  or 



















.
3

,
3

3
±

2

2

2

ik

a

ik

ik

a

ik

ik

a

ik

g
r

R

g
r

R

g
r

R   (2.7) 

Equations (2.7) will be called the second Einstein field equations. 

Solutions to the second field equations (2.7) constitute the next set of metrics with 

signature (+ – – –) (i.e., for the conditional convex vacuum region: 

 2222

2

2

2
22

2

2
2)(

1 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

a

ba

b 
































,   (2.8) 

 2222

2

2

2
22

2

2
2)(

2 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

a

ba

b 





















 ,   (2.9) 

 2222

2

2

2
22

2

2
2)(

3 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

a

ba

b 



















 ,   (2.10) 

 2222

2

2

2
22

2

2
2)(

4 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

a

ba

b 



















 ,   (2.11) 

 22222222)(

5 sin  ddrdrdtcds  ;    (2.12) 

and with signature (– + + +) (that is, for the concave vacuum region): 

  ,sin

1

1 2222

2

2

2
22

2

2
2)(

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

a

ba

b 



















   (2.13) 
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  ,sin

1

1 2222

2

2

2
22

2

2
2)(

2  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

a

ba

b 



















    (2.14) 

  ,sin

1

1 2222

2

2

2
22

2

2
2)(

3  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

a

ba

b 





















    (2.15) 

  ,sin

1

1 2222

2

2

2
22

2

2
2)(

4  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds

a

ba

b 



















    (2.16) 

 22222222)(

5 sin  ddrdrdtcds  .    (2.17) 

where rb is the constant of integration, analogous to b = r0 in the solutions (1.13). 

We call metrics (2.8) through (2.17) «Kottler generalized metrics». Departing 

from the metric expressed by (2.12) and (2.17) we obtain the special cases of the Kottler 

metrics (2.8) through (2.11) and (2.13) through (2.16), respectively, using rb = 0 and 

ra = . 

The sum of all metrics (2.8) through (2.17) again leads to the metric (1.21), which 

is also a trivial solution of (2.7). 

When ra =  and rb ≠ 0, the generalized Kottler metric described by the conjunc-

tion of (2.8) through (2.17) is transformed into the generalized Schwarzschild metric 

described by (1.14) through (1.19), while for rb = 0 and 1/ra = 1/r0 ≠ 0, the metrics (2.8) 

to (2.17) combine to become the deSitter metric: 

(а) to measure the convex vacuum region (bulge), with signature (+ – – –): 

 2222

2

0

2

2
22

2

0

2
2)( sin

1

1  ddr

r

r

dr
dtc

r

r
dsа 



















 ,   (2.18) 

 ,sin

1

1 2222

2

0

2

2
22

2

0

2
2)(  ddr

r

r

dr
dtc

r

r
dsb 



















    (2.19) 

 22222222)( sin  ddrdrdtcdsc  ;    (2.20) 

(b) measure the concave vacuum region (concavity) with signature (– + + +): 
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  ,sin

1

1 2222

2

0

2

2
22

2

0

2
2)(  ddr

r

r

dr
dtc

r

r
dsa 



















    (2.21) 

  ,sin

1

1 2222

2

0

2

2
22

2

0

2
2)(  ddr

r

r

dr
dtc

r

r
dsb 



















    (2.22) 

 22222222)( sin  ddrdrdtcdsc  .   (2.23) 

When ra = r0, the metric described by the conjunction of (2.18) and (2.19) de-

scribes a closed convex (spherical) vacuum formation (i.e., the «core») in the range  

[0, r0] (Figure 2.1). This describes a region that has been defined as a vacuum cavity in 

the solution of the first vacuum equations (1.6) (Figure 1.2). 

The arithmetic average of the two metrics (2.18) and (2.19) forms a 2-braid: 

  .sin

1

2222

4

0

4

2
222)(  ddr

r

r

dr
dtcdsab 











    (2.24) 

Substituting components gii
0(–) and gii

(–), respectively, from (2.20) and (2.24) into 

(1.32), we obtain the relative lengthening of the one of side of vacuum 

,0)( 

tl  11
44

0

4
0)( 







rr

r

r

r
lrc

, 0
)(



l , 0)( 

l .   (2.25) 

The function lrc
(–) (the factor of expansion in the radial direction of the vacuum in 

the core) is shown in Figure 2.1. 

In this case, a 4-braid ds1–4
(–), for example, the helices dsi

(–) of the four metrics 

(2.8) through (2.11) are formed and described via quaternions in (Gaukhman 

2007/2008/2009/2017). 

ds1–4
(–) = 

4
1 (ds1

(–) + ids2
(–) + jds3

(–)+kds4
(–)).   (2.26) 

Comparing g00
(–) in the metrics (2.18) and (2.19) with g00

(–) in the metric (1.45) 

and g00
(+) in the metrics (2.21) and (2.22) and with g00

(+) in the metric (1.46), we find 

the speed of movement of the vacuum layers at each point of the «core» of the vacuum 

formation (Figure 2.1). 
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Fig. 2.1. Graph of lrc
() function – elongation of the vacuum extension  

in the core (i.e. within a spherical cavity) 

 

for the metric (2.18): 

1 + r2/r0
2 = 1+ vra

(–)2/c2 → vra
(–)2 = c2r2/r0

2 → vra
(–) = cr/r0; (2.27) 

for the metric (2.19): 

1 – r2/r0
2 = 1+ vrb

(–)2/c2 → vrb
(–)2 = –c2r2/r0

2 → vrb
(–) = – cr/r0; (2.28) 

for the metric (2.21): 

– (1+ r2/r0
2) = – (1+ vra

(+)2/с2) → vra
(+)2 = c2r2/r0

2 → vra
(+) = cr/r0; (2.29) 

for the metric (2.22): 

– (1 – r2/r0
2) = – (1+ vrb

(+)2/с2) → vrb
(+)2 = –c2r2/r0

2 → vrb
(+) = – cr/r0. (2.30) 

From the expression (2.27) through (2.28) of the movements in mutually opposite 

directions, we find that the speed of the vacuum layers vra
(–) = – vrb

(–) in the center of 

the core (at r = 0; Figure 2.1) is zero, and on the periphery of the «core» with radius r0, 

they move with the speed of light c. 



Scientific Cooperation Center "Interactive plus" 
 

19 

Content is licensed under the Creative Commons Attribution 4.0 license (CC-BY 4.0) 

More important than this situation are those when the core of the vacuum for-

mation revolves. However, according to the classification given in the Table 1.1, a 

subcont rotates in the periphery of the core at the speed of light vra
(–)(r0) = с (Fig-

ure 2.2). It then describes a helix, slowing down as it approaches the center of the core, 

almost stopping, vra
(–)(0) = 0, as it is converted into a b-subcont. In its turn, the b-sub-

cont flows in a winding fashion from the core of the center of the acceleration, starting 

from the speed vrb
(–)(0) = 0 and ending by rotating on the periphery of the «core» (r0) 

with the speed of light, vrb
(–)(r0) = с (Figure 2.2), where it is converted into an a-sub-

cont. Thus, the intracore ab-subcont «processes» the loop, and support the strongly 

deformed periphery of the core of the vacuum formation (Figure 2.1) at a steady state. 

 

Fig. 2.2. Rotation of the core of the vacuum formation 

 

3. The non-Riemannian geometry with torsion and rotation 

In the previous section, it was noted that the study of stable vacuum entities should 

take into account the rotation of their «core», therefore touch on some aspects of ge-

ometry with torsion and rotation. 
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Of all non-Riemannian geometries, one of the most important is the geometry of 

Riemann-Cartan space with absolute parallelism, which was often used by Einstein 

(Einstein 1928). The Riemann-Christoffel curvature tensor uses this, as given in 

(Ivanenko, Pronin, Sardanashvily 1985). We the curvature equal to zero as follows: 

  ,0;;  





















 KKKKKKRQR    (3.1) 

where the Riemann curvature tensor is 𝑅𝛽𝜇𝜈
𝛽

=
𝛿

𝛿𝑥𝜇
Γ𝛽𝜈

𝛽
−

𝛿

𝛿𝑥𝜈
Γ𝛽𝜇

𝛽
+ Γ𝜇𝜎

𝛽
Γ𝛽𝜈

𝜎 − Γ𝜈𝜎
𝛽

Γ𝛽𝜇
𝜎  

and the other terms are based on the contortion tensor, using the lowering of the indices 

via 𝑄𝜇𝜈𝜆 = 𝑔𝜆𝛼𝑄𝜇𝜈
𝛼  

𝐾𝜇𝜈𝜆 =
1

2
(𝑄𝜇𝜈𝜆 − 𝑄𝜈𝜆𝜇 + 𝑄𝜆𝜇𝜈),    (3.2) 

which in its turn is based (by lowering of the indices) on the torsion tensor: 

𝑄𝜇𝜈
𝜆 =  Γ𝜇𝜈

𝜆 − Γ𝜈𝜇
𝜆 .      (3.3) 

The identity (3.1) means that in absolute parallelism geometry, the components 

of the Riemann curvature tensor are fully compensated by torsion. In this case, instead 

of (2.7) in the geometry based on the variational principle, one obtains the Einstein-

Cartan equation (Ivanenko, Pronin, Sardanashvily 1985): 

,2
1

 YgRgR       (3.4) 

where: 

 

















 KKKKgKKKKKKKKY  2
1    (3.5) 

is the Cartan-Schouten tensor; 

 QQK  2  is the trace of the contortion tensor. 

This equation looks as if the torsion of space, or rather the rotational inertia as 

explained in (Shipov 1997), is the source of its curvature. Investigating more closely, 

one sees that the converse is the case, whereby the curvature of space is the source of 

its torsion. 

In the works of R. Vaytsenbeka, D. Vitali and G. Shipov, absolute parallelism 

geometry also received full geometrized treatment using the equation (Shipov 1997): 

,2
1

jmjmjmjm ФgRgR        (3.7) 

where the right side is expressed in the formal terms of reference: 
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i

is
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s
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mjijm gg    (3.8) 

is the Vaytsenbek-Vitali-Shipov tensor; 

  ......


s
mjks

s
mkis

imi
jk

i
jk ggg      (3.9) 

is the Ricci rotation coefficients; 

 a
kj

a
jk

i
a

i
jk eee ,,2

1        (3.10) 

is the non-holonomicity object; eak are components of the unit vector of a rotating 3-D 

reference basis. 

Different approaches by Cartan – Schouten and Vaytsenbek – Vitali – Shipov to 

constructing geometries with torsion and rotation characterize the different types of 

rotational space. If the Yμν tensor characterizes the motion vector at the start of the trial 

and the curved region of the rotating vacuum, the tensor Фik characterizes the torsional 

rotation around the center of reference in 3 dimensions (Shipov 1997). 

In general, the equation is fully geometrized: 

.2
1

 ФYgRgR 
    (3.11) 

However, existence not equal to zero of the right-hand sides of equations (3.6), 

(3.7) and (3.11) leads inevitably to an unstable condition of the vacuum region, because 

tensors Yμν and Fμν are both nonzero, so that they obey: 

0)()(
)(

)( 





ikik
l
kjikik

l
ijj

ikik
ikikj ФYГФYГ

x

ФY
ФY ,  (3.12) 

instead of the law of conservation: 

(Yik + Фik )/xk = 0,      (3.13) 

Thus, for stable vacuum formations all the components of the Cartan-Schouten 

tensor Yμν and the Vaytsenbek-Vitali-Shipov tensor Фik should be equal to zero. Thus 

the identity (3.11) falls into a system of two or three equations: 
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   (3.14) 
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It is important to note that in Riemann-Cartan, space is unbalanced due to the 

asymmetry of the Christoffel symbol and the Ricci tensor Rμν ≠ Rνμ. But in the particular 

case of  = 0, Yμν = 0 and μν = 0 (or Yμν + μν = 0) of the equations (2.5) and (3.11), 

Rμν = 0 and Rνμ = 0, so they are identically equal. 

This corresponds to these types of spins and vacuum twists which do not affect 

the Ricci tensor Rμν, but they can influence the curvature tensor components. It seems 

that a certain amount of space is rotated with respect to the external observer, but those 

who are within its scope almost do not feel this rotation. As a rough example, it is very 

difficult to feel that the Earth's surface rotates for those on it. However, there are effects 

indicating the presence of inertial forces caused by the rotational motion of the planet, 

for example, the apparent deviation of the pendulum of Foucault, the different slopes 

of the left and right banks of rivers, etc. It is this type of rotation of the core of the 

vacuum formation that we have treated in Section 2 (Figure 2.2). 

4. Advanced (third) Einstein field equation 

Up to this point we have considered well-known solutions for the Einstein field 

equations (1.6) and (2.7). We are now ready, for the first time, to consider an expanded 

version of these equations. 

Due to the properties of the components of the metric tensor (2.1), it is easy to 

show that: 

j g ik = j gik = 0.     (4.1) 

The equality: 

  ,0... ... 321321   ikjikjikjikjikikikikj gggggggg
 (4.2) 

where 1, 2, ... , 

 

are constants, is also clear. Therefore, guided by the same con-

siderations that led Einstein to introduce  as a member of equation (2.3), we can write 

,0...
2

1
321   ikikikikikik ggggRgR

  
 (4.3) 

or: 

  ,0...
2

1
321   ikikik gRgR

   (4.4) 
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where rk is the radius of the kth spherical vacuum formation. 

Equation (4.4) can meet all the requirements to satisfy the equation (2.3) if 

1+2+...+

 
= Λ0 (i.e. if the given series converges to Λ0). Indeed, in this case, equa-

tion (4.4) reduces to the form (2.3): 

.0
2

1
0  ikikik gRgR

    (4.5) 

Combining (4.4) with gik, we get: 

    ,0...
2

...
2

1
321321 
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n
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  (4.6) 

whence: 

.
2

2

2

2
0

1







 


 n

n

n

n
R

k

k

     (4.7) 

Substituting (4.7) in (4.6) for n = 4 we obtain the simplest (for this case) version 

to expand the Einstein field equation: 

.0
1

 


k

kikik gR       (4.8) 

This expression will be called the «third Einstein field equation». 

The series in equation (4.4), taking into account (4.7) and n = 4, converges to R/4 

either: 

 

where Nk represents a sequence of numbers. 
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Of particular interest is the average of the Ricci-flat vacuum region from Rik = 0 

because of its correlation with Ricci-flat Calabi-Yau spaces. In this case, according to 

(4.7) and (4.8) 0
1

0  


k

k
 and R = 0, the system of equations (3.14) breaks up into a 

system of two or three equations: 
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     (4.11) 

5. Solutions of the third Einstein field equations 

Consider the most important (in the opinion of the author) case when the third 

Einstein field equation (4.8) has the form: 







1k

kikik gR ,      (5.1) 

where: 

  013 0
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





 k k
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k
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N
    (5.2) 

is an alternating series which is equal to zero. 

First of all, we find the solution of equation (4.8) with: 

,00  ikik gR        (5.3) 

where (5.3) coincides with the second Einstein field equations (2.7). Therefore, 

the solutions of (5.3) are generalized Kottler metrics for the formation of a convex 

vacuum region (formations), the metrics (2.8) through (2.17), all of which have signa-

ture (+ – – –): 
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 22222222)(
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or signature (– + + +) for a concave vacuum formations: 

 22222222)(
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 ,     (5.9) 
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where: 
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k k

kkf rrr      (5.15) 

whereby we may substitute b = rf in the solution to (1.13). 

Further will be considered two private, but, in the author's opinion, important 

cases which we will conditionally call «Hierarchy of ten spheres» and «Lucas-Fibo-

nacci Branches». 

Terminology: The two cases may appear isolated, but together their solutions re-

late to one another in ways yielding unexpectedly fruitful results. The author considers 

these important enough to baptize them with names. Just as Gell-Mann could allude to 

a term from Buddhism to coin his Eightfold Way, so too we allude to a couple of terms 
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out of an ancient Jewish tradition in order to coin our terms for the organization pre-

sented in the next two sections. The first set of results (Section 6) is dubbed the «Hier-

archy of ten spheres», while the second (Section 7) is baptized «Lucas-Fibonacci 

Branches». 

6. Hierarchy of ten spheres 

We investigate the special case where the series (5.14) and (5.15) have the simple 

form: 
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Consider a series of separate positive and negative terms 
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We substitute the series (6.3) in the metric (5.4) through (5.7) instead of the series 

(5.14) and (5.15) and take into account that we can write: 
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The result is a metric with signature (+ – – –): 
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Similarly, substitution of series (6.4) in the metric (5.10) through (5.13) affords 

metrics with the antipodal signature (– + + +): 

  .sin 22222222)(
5  ddrdrdtcds     (6.14) 
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(6.18) 

We now consider what the radii rk in the metric expressed by (6.5) through (6.18) 

may equal. It is natural to assume that in a fully geometrized physics only geometric 

constants must be present. These constants may include: Rv, the parametric radius of 
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the universe; and lс ≈ с Δt ≈ с · 1 sec ≈ 2,9·1010 cm that is, the distance traveled by the 

beam of light in a vacuum during a single time interval Δt = 1 second. 

Assuming that the radii rk in the metric (6.5) through (6.18) is estimated as the 

ratio: 

rk ~ Rv
2/lсk, 

where lсk = (2,9·1010) k cm is the distance obtained by the construction of 2,9·1010 raised 

to the power of k. If we assume that Rv ≈ 1025 cm, we get the approximate relation: 

k
ck

v
k

l

R
r

)109,2(

10
~

10

502


 cm,     (6.19) 

which implies a hierarchical sequence of the radii of the ten spheres. 

Terminology: Before proceeding, we must note that some of the entities here are 

analogues to, and sometimes overlapping with, measurements related to measurable 

subatomic particles, although the new entities are more general and not necessarily 

directly measurable, for the moment only appearing in calculations. (We leave aside 

the philosophical considerations as to whether all terms in a calculation must corre-

spond to a real physical entity when the end result is just the same. The recurring 

debate on the «reality» of the wave function is an example that both sides have a basis 

to justify their positions. As well, many terms graduate from purely mathematical enti-

ties to representations of real entities, such as was the case with the positron, the neu-

trino, and countless other entities that we regard today as real). 

In the framework of the Algebra of Signatures («Alsigna»), the names of the indi-

vidual particles are put into guillemets, for exampel: «electron», «muon», etc. In this 

way metric-dynamic models of given local vacuum entities of Alsigna are clearly dis-

tinguished from the corresponding particles in the Standard Model and in String The-

ory. 

The usual analysis breaks up an entity into sub-entities, which are then broken 

down in their turn, each layer using a different structure until one arrives at elementary 

particles. The structure proposed in this paper, on the other hand, is available at all 

levels, even for the elementary particles. 
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The terms for the constituents at one layer below the «particles», use one coined 

word: «particelle» (coined from «particle» and «organelle»), and three other terms: 

«scope», «outer shell», and «abyss»; the usage of these latter three terms should be 

clearly distinguishable by the context from those of other contexts. In fact, it would be 

more useful to consider these as structures, applicable to a wide variety and scale of 

physical entities, than as particles. This difference is emphasized in the list below 

(6.20). The reader will immediately note in that list, whereas many of the numbers 

could correspond to directly measurable quantities, others clearly do not. For exam-

ple, lengths are given that are beyond the range of measurement: bigger than the ob-

servable universe, and smaller than the Planck distance. 

 

Fig. 6.1. The sequence of nested spherical vacuum formations 
 

Of course, we could have left each rk named simply «rk» for respective values of 

k. However, we hope that the names assigned will serve as an aid to intuition, whereby 

one should not take the names any more literally Lengths r2 through r6 are within an 

order of magnitude of well-known physical measurements. 

Furthermore, we do not use a zero length for any particle, because we do not 

really use particles in the classic sense. After all, particles are defined as stable local 
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deformations of vacuum. We uses the word «particle» for convenience, although it is 

stable area of strong deformations and bound intra-vacuum currents. 

With this lengthy preamble, we may now proceed by approximate recurrence re-

lation (6.19): 

r1 ~ 3,4·1039 cm: ~ «Universe» inner core (6.20); 

r2 ~ 1,2·1029 cm: ~ «metagalaxy» inner core; 

r3 ~ 4·1018 cm: ~ «galaxy» inner core; 

r4 ~ 1,4·108 cm: ~ «star» or «planet» inner core; 

r5 ~ 4,9·10–3 cm: ~ biological «cage» inner core; 

r6 ~1,7·10–13 cm: ~ core of an elementary «particle»; 

r7 ~ 5,8·10–24 cm: ~ core of an «protoquark»; 

r8 ~ 2,1·10–34 cm: ~ core of an «plankton»; 

 r9 ~ 7·10–45 cm: ~ core of an «phytoplankton»; 

r10 ~ 2,4·10–55 cm: ~ core of an «instanton». 

 

Fig. 6.2. Hierarchy of ten nested spherical vacuum formations 
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Metrics (6.5) through (6.17) are the solutions of the simplified third Einstein vac-

uum equations (5.1) 

0
10

1

 
k

kikik gR ,      (6.21) 
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In the hierarchy of the radii rk (6.20), these solutions describe a sequence of nested 

spherical vacuum formations (Figures 6.1, 6.2). 

For example, consider one of the vacuum degree of the hierarchy (6.20) with a 

radius r6 ~ 1,7·10–13 cm corresponding to the characteristic size of the «core» of «ele-

mentary particles». All other vacuum formations of the hierarchy considered here 

(6.20) are arranged similarly. 

The radius of the core of such a formation is almost the same as the Thompson 

scattering length (aka the Lorenz radius). Despite the fact that the Thompson scattering 

length, 2,8∙10–13 cm, is unrelated to the actual size of the electron, it is called the «clas-

sical radius of the electron». Since this length is the same order of magnitude of the 

value for the radius r6 ≈ 1,7∙10–13 cm of this formation, we find it fitting to dub the 

«particle» at this scale the «electron». Our further constructions, once the other «par-

ticles» are in place, will further justify this decision. 

In the metrics (6.9) through (6.12) will leave only those composed which contain 

radii r6. As a result, we obtain the following multilayer metric-dynamic model of «elec-

tron» (i.e. convex vacuum formation) with a core radius almost equal to «the classical 

radius of electron» r6 ≈ 2,8·10–13 cm. 

 



Scientific Cooperation Center "Interactive plus" 
 

33 

Content is licensed under the Creative Commons Attribution 4.0 license (CC-BY 4.0) 

 2222

2

5

2

6

2
22

2

5

2

62)(

1 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds 



















 ,   (6.23) 

 2222

2

5

2

6

2
22

2

5

2

62)(

2 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds 



















 ,   (6.24) 

 2222

2

5

2

6

2
22

2

5

2

62)(

3 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds 



















 ,   (6.25) 

 2222

2

5

2

6

2
22

2

5

2

62)(

4 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds 



















 ;   (6.26) 

 

 2222

2

6

2

7

2
22

2

6

2

72)(

1 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds 





















 ,   (6.27) 

 2222

2

6

2

7

2
22

2

6

2

72)(

2 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds 



















 ,   (6.28) 

 2222

2

6

2

7

2
22

2

6

2

72)(

3 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds 



















 ,   (6.29) 

 2222

2

6

2

7

2
22

2

6

2

72)(

4 sin

1

1  ddr

r

r

r

r

dr
dtc

r

r

r

r
ds 



















 ;   (6.30) 

 

  



Центр научного сотрудничества «Интерактив плюс» 
 

34     www.interactive-plus.ru 

Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0) 

Similarly, the metrics (6.13) through (6.17) retain only those terms that contain 

radii r6. As a result, we obtain the following convention for a metric-dynamic model 

of a concave vacuum formation which we will dub an «positron» (exact antipode to an 

«electron»): 
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Fig. 6.3 Outer shell, abyss, core and the internal particelle  

of the elementary «particle» 

 

Figure 6.3 shows a geometricized model of a spherical vacuum formation with 

subformations, using radii of the hierarchy (6.20). Taking, for example, the «electron» 

(or its antipode, the «positron»), the formation represented in Figure 6.3 would have: a 

«core» with a radius r6 ~ 1,7·10–13 cm; an inner particelle with a radius r7 ~ 5,8·10–24 

cm and an outer shell extending from r6 ~ 1,7·10–13 cm to r5 ~ 4,9·10–3 cm (or to r4 ~ 

1,4·108 cm, or up to r3 ~ 4·1018 cm, etc., depending on in which spherical formation 

there is an core of the «electron»). 
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In another case, for example, «planet» inner core has a radius r4 ~ 1,4·108 cm; its 

particelle has the radius r5 ~ 4,9·10–3cm (or, r6 ~ 1,7·10–13 cm, etc., depending on which 

spherical formation is found in the «planet» inner core) and the outer shell extends 

from r4 ~ 1,4·108 cm to r3 ~ 4·1018 cm (or until r2 ~ 1,2·1029 cm, or up to r1 ~ 

3,4·1039 cm). 

The «scope» (6.31) or (6.41) of a spherical vacuum formation begins at the center 

and ends at infinity. The scope represents a kind of memory of the undeformed portion 

of the considered vacuum area. It is almost as if it does not exist in the curved portion 

of the vacuum state, but according to equation (1.32), the relative elongation and de-

formation of the vacuum section cannot be determined without the gii
0(–) of the scope. 

Тhe «abyss» (Figure 6.3) is a spherical boundary between the core and the outer 

shell of any spherical vacuum formation. 

7. Lucas-Fibonacci branches 

We return to the series (5.2): 
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Among the many numerical sequences, the familiar Fibonacci sequence, 

0,1,1,2,3,5,8,11... occupies a special place. It may be extended to the negative numbers, 

yielding the less familiar «negafibonacci numbers»:  

F–8 F–7 F–6 F–5 F–4 F–3 F–2 F–1 F0 F1 F2 F3 F4 F5 F6 F7 F8 

–21 13 –8 5 –3 2 –1 1 0 1 1 2 3 5 8 13 21 

 (7.2) 

We can also modify it to «seed» the beginning two numbers of the recursion, using 

0 and –1 for the seeds, yielding 

... 21, –13, 8, –5, 3, –2, 1, –1, 0, – 1, –1, –2, –3, –5, –8, –13, –21... (7.3) 

All of these follow the recursion relation 

Fn = Fn–1 + Fn–2. 

We may now use the negafibonacci numbers for our sequence Nk in the series 

(7.1), labeling the nth term in the sequence Fn for integer n, yielding: 
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Also Lucas numbers can be used, which are defined by the recurrence formula 

Ln=Ln–1 +Ln–2 for L0= 2 and L1= 1; or nnnn

nL  )()1(  , (7.5) 

where the golden section Phi, 
2

51
 . 

One example of a Lucas sequence occurs by using the values 2 and 1 for n = 0, 1: 

Ln: 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, …  (7.6) 

In this case, (7.1) can take the form: 
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Taking into account the third Einstein field equations (7.4) and (7.7), the equation 

(5.1) can be written as: 
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Since the conditions (7.4) and (7.7) are similar to (5.2), the solution of equation 

(7.8) will be similar to the solution of equation (5.1). The difference is that in the met-

rics (5.4) through (5.13) one should not substitute the series from (5.14), but rather, for 

the general case, the series: 
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It is necessary to expect that the vacuum equations may include the Fibonacci 

numbers Fn, the Lucas numbers Ln and φ (the golden section), as they contribute to the 

harmony of so many other phenomena in nature. We follow up on this expectation. 

Combining the results of this and previous points, we arrive at the following 

model of the physical universe: the hierarchical sequence of ten spheres with radii rk 

(6.20) acts as a «trunk» and the solutions of equation (7.8) look like Lucas-Fibonacci 

branches radiating in all directions from this grand trunk. 

Now we may ponder the following question. If the right sides of the Einstein field 

equations (1.6), (2.7) and (4.8) are equal to zero, leading to a state with no mass, what, 

then, fills the void? 

In the framework developed here, this void is filled with a variety of spherical 

convex and concave vacuum formations with different radii, which interact with each 
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other by means of vacuum currents. This is, however, not ether or Descartes’ vortices, 

as we shall outline in the following outline. A full exposition of the relationship be-

tween the fundamental forces (electromagnetic, nuclear and gravitational) and the 

spherical vacuum formations of different scales would stretch this paper beyond rea-

sonable limits; articles by Gaukhman present a fuller exposition (Gaukhman 

2007/2008/2009). 

8. The elements of the Algebra of signatures 

We return to the metrics (1.16) and (1.19), which for brevity can be represented 

in a Cartesian coordinate system: 

ds(+ – – –)2 = с2dt 2 – dx2 – dy 2 – dz2 = x0
2 – x1

2 – x2
2 – x3

2 = 0 with signature (+ – – –), 

(8.1) 

ds(– + + +)2 = – с2dt 2 + dx2 + dy 2 + dz 2 = – x0
2 + x1

2 + x2
2 + x3

2 = 0 with signature 

(– + + +). (8.2) 

Here we use the following conventions: 

s(+ – – –)2 = ds(–)2, s(– + + +)2 = ds(+)2, x0
2 = с2dt 2, x1

2 = dx2, x2
2 = dy 2, x3

2= dz2. (8.3) 

These metrics are solutions at the same time all three vacuum equations (1.6), 

(2.7) and (4.8). 

In addition to the metrics (8.1) and (8.2) with signatures (+ – – –) and (– + + +), 

14 other possible metrics can be written with the corresponding signatures:  
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2=0 (8.4) s(+ + – +)2 = x0
2 + x1

2 – x2
2 + x3

2 =0 (8.5) 

 s(– + – –)2 = – x0
2 + x1

2 – x2
2 – x3

2 =0  s(+ – + +)2 = x0
2 – x1

2+ x2
2 + x3

2 =0  

s(+ – + –)2 = x0
2 – x1

2 + x2
2 – x3

2 =0  s(– + – +)2 = – x0
2 + x1

2 – x2
2 + x3

2 =0  

s(+ + – –)2 = x0
2 + x1

2 – x2
2 – x3

2 =0  s(– – + +)2 = – x0
2 – x1

2 + x2
2 + x3

2 =0  

s(+ – – –)2 = x0
2 – x1

2 – x2
2 – x3

2 =0  s(– + + +)2 = – x0
2 + x1

2 + x2
2 + x3

2 =0  

Operations on the metrics (8.4) and (8.5) will be carried out componentwise, so 

we will call such aggregate metrics «ranks» (Gaukhman 2007). 
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Instead of the uniform terms in the ranks (8.4) and (8.5) being summed up directly, 

they can be summed up using only signs preceding these terms. So for brevity, instead 

of ranks (8.4) and (8.5), we can use the following equivalent ranks:  

 

The subscripted sign after the brackets (...)+ indicates what operation is done with 

the numbers corresponding to the characters in the columns and/or rows; that is, (...)+ 

for addition, (...)– for subtraction, (...) for division and (...)× for multiplication. Alt-

hough the other operations could be also defined componentwise, excluding division 

by zero, we shall not do so here, as presently we are only concerned with addition. 

The metrics with the above features, as ranked in (8.4) and (8.5), are not solutions 

of the Einstein field equations (1.6), (2.7) and (4.8). This can be verified by direct sub-

stitution of the metric tensor components of these metrics in the corresponding equa-

tions. 

However, regard the result from, for example, summing (as earlier explained) the 

first seven metrics of the ranking (8.4); it is the metric with signature (+ – – –):  

s(+ – – –)2 = x0
2 – x1

2 – x2
2 – x3

2 = 0. (In order to make this calculation, one can simply add 

up the respective columns.) 

Similarly, the sum of the first seven metrics ranked by (8.5) is wound with the 

opposite metric signature (– + + +): s(– + + +)2 = – x0
2 + x1

2 + x2
2 + x3

2 = 0. 

Therefore, vertically summing up the seven metrics of (8.4) and/or (8.5), leads to 

solutions of the Einstein field equations (1.6), (2.7) and (4.8): (8.7) 

ds(+– – –)2 = ds(+ + + +)2 + ds(– – – +)2 + ds(+ – – +)2 + ds(– – + –)2 + ds(+ + – –)2 + ds(– + – –)2 + ds(+ – + –)2, 

ds(– + + +)2 = ds(– – – – )2 + ds(+ + + –)2 + ds (– + + –)2 + ds(+ + – +)2+ ds(– – + +)2 + ds(+ – + +)2 + ds(– + – +)2. 

The same is true of horizontal sums of the above. For example, 

ds(+ – – +)2 + ds (– + + –)2 = 0∙с2dt2 + 0∙dr2 + 0∙ d 2+ 0∙sin2 d 2 = ds (0 0 0 0)2, (8.8) 
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In addition, the sum of all 16 metrics of (8.4) and (8.5) is a solution of the given 

vacuum equations: 

ds2 = ds(+ – – –)2 + ds(+ + + +)2 + ds(– – – +)2 + ds(+ – – +)2 + 

+ ds(– – + –)2 + ds(+ + – –)2 + ds(– + – –)2 + ds(+ – + –)2 +    (8.9) 

+ ds(– + + +)2 + ds(– – – – )2 + ds(+ + + –)2 + ds(– + + –)2 + 

+ ds(+ + – +)2 + ds(– – + +)2 + ds(+ – + +)2 + ds(– + – +)2 = ds (0 0 0 0)2 = 0. 

An equivalent representation of a signature of expression (8.9) has the form 

(+ – – –) + (+ + + +) + (– – – +) + (+ – – +) + 

+ (– – + –) + (+ + – –) + (– + – –) + (+ – + –) + (8.10) 

+ (– + + +) + (– – – –) + (+ + + –) + (– + + –) + 

+ (+ + – +) + (– – + +) + (+ – + +) + (– + – +) = {0 0 0 0}. 

A structure based on these ranks takes the form of «vacuum conditions»: 

 

This process could be called «splitting of zeros» (Gaukhman 2007). 
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The seventeen signatures (8.10) form a structure as indicated in the above intro-

duction to the Algebra of signatures. A further structure which is developed in the cited 

references can be created by adding the Kronecker product and using the formation of 

the sixteen non-zero signatures of the ranked (8.11) in the anti-symmetric matrix re-

sulting from the square using the Kronecker product of a 2 × 2 matrix of binary signa-

tures (Gaukhman 2007/2017): 









































)()()()(

)()()()(

)()()()(

)()()()(

)()(

)()(
2

  (8.12) 

We shall not follow up on this possibility in this paper; the reader is referred to 

the papers alluded to above. 

According to the classification of Felix Klein, quadratic forms (8.4) and (8.5) are 

divided into three topological classes (Klein 2004): 

1st class: quadratic forms (metric), the signatures of which are composed of four 

identical characters: 

x0
2 + x1

2 + x2
2 + x3

2 = 0 (+ + + +)     (8.13) 

– x0
2 – x1

2 – x2
2 – x3

2 = 0 (– – – –)     (8.14) 

represent a «null» 4-metric space. In these spaces, there is only one actual point that is 

at the beginning of the light cone. All other terms of these extents are imaginary. In 

fact, in this case the metric (8.13) does not describe a positive length but rather a single 

point (which we will term a «white» point); and the metric (8.14) describes a single 

anti-point (which we shall term a «black» point). 
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2nd class: metrics, whose signatures are composed of three identical symbols and 

one of the opposite: 

 

is an oval with four surfaces (Klein 2004): a) ellipsoid; b) elliptic paraboloid; c) two-

sheeted hyperboloid (elliptic hyperboloid). 

3rd class: metrics, the signatures of which are composed of two positive and two 

negative signs: 

 

These represent a variety of options for annular surfaces (Klein 2004): (a) single-

band hyperboloids; (b) hyperbolic paraboloids. 

A simplified illustration of the signature due to its topology of the 2-dimensional 

region is shown in Figure 8.1. 
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a) sign (+ +); b) sign (– +); c) sign (+ 0) 

z = x1
2 + x2

2 z = x2
2 – x1

2 z = x1
2 

Fig. 8.1 Signature of the metric connection with the topology  

of 2-dimensional length (Klein 2004) 

 

Such an additive overlay (or «atlas») of a 7-metric space with metrics (8.4) and 

(8.5) leads to the Ricci-flat spaces with the total metrics (8.1) and (8.2). Such  

a 7-sheeted atlas is very similar to the Ricci-flat 10-dimensional Calabi-Yau space. 

Stability can only be: 

 a convex vacuum formation, described by a metric with signature (+ – – –), 

 a concave vacuum formation described by a metric with signature (– + + +), 

 a «flat» vacuum formation, described by a metric with signature (0 0 0 0). 

All the other 14 metrics (8.4) and (8.5) with the signatures of the numerators are 

ranked by (8.6): 

 

describe various types of «convex-concave» states. The corresponding regions of the 

vacuum may not be stable, since metric data cannot be solutions of vacuum equations. 

They can occur as temporary complex distortions of a local vacuum area, but after 

some time they disappear or turn into other types of fluctuations with other signatures 

(or topologies). 
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However, if the additive superposition of several metrics with signatures (topolo-

gies) in the sum as in (8.17) leads to an average of convex vacuum formations with the 

signature (+ – – –), or in the concave average vacuum formation with the signature 

(– + + +), or in the «flat» average vacuum formation with the signature (0 0 0 0), then 

the corresponding vacuum degree may be stable. 

9. The «proton»  «antiproton» 

Solutions of Einstein field equations (1.6), (2.7) and (4.8) lead not only to aggre-

gate metrics (8.4) and (8.5), but, for example, also to additive combinations of metrics: 

 

There are three possibilities for the average convex vacuum of formation, which 

can be represented in an equivalent form:  

 

and three possibilities for the average concave vacuum formation:  

 

Recall that the metrics (8.1) and (8.2) are special (limiting) cases of all other met-

rics (2.8) through (2.11) and (2.13) through (2.16) are solutions of the second vacuum 

equations (2.7). Therefore, the mathematical techniques outlined by the author, the Al-

gebra of signatures as explained above, apply to all these derivations. 

We will enter ideas of «quarks». 
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To do this, we write the ranks (9.3) through (9.8) as (9.9) through (9.11) as fol-

lows:  

 

where pi
+ are three different states of an «proton» (i = 1, 2, 3).  

 

where pi
– are three different states of an «antiproton». 

The sets of ten kinds of metrics (6.22) with the appropriate signatures from the 

matrix (8.12) will be termed as follows: 

10 metrics of the form (6.22) with signature (+ + + –): red dr
+-«quark»; 

10 metrics of the form (6.22) with signature (+ + – +): green dg
+-«quark»; (9.15) 

10 metrics of the form (6.22) with signature (+ – + +): blue db
+-«quark», 

10 metrics of the form (6.22) with signature (– – – +): red dr
–-«antiquark»; 

10 metrics of the form (6.22) with signature (– – + –): green dg
–-«antiquark»; (9.16) 

10 metrics of the form (6.22) with signature (– + – –): blue db
–-«antiquark», 

10 metrics of the form (6.22) with signature (+ – – +): red ur
+-«quark»; 

10 metrics of the form (6.22) with signature (+ – + –): green ug
+-«quark»; (9.17) 

10 metrics of the form (6.22) with signature (+ + – –): blue ub
+-«quark». 

10 metrics of the form (6.22) with signature (– + + –): red ur
–-«antiquark»; 

10 metrics of the form (6.22) with signature (– + – +): green ug
–-«ntiquark»; (9.18) 

10 metrics of the form (6.22) with signature (– – + +): blue ub
–-«antiquark». 

Note: 10 metrics are of the form (6.22), because the scope (6.31), as well as the 

core, are related to the outer shell. In this way, 5 metrics describe the core, and 5 met-

rics describe the outer shell, to make up the total of 10 metrics.  
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In this case, the three «proton» states of and three «antiproton» states may be 

represented as: 

p1
+ = ug

–ub
–dr

+, p2 +
 = ur

– ub
– dg

+, p3
+ =

 ug
– ur

– db
+

,   (9.19) 

p1
– = ug

–ub
–dr

+, p2 – = ur
– ub

– dg
+, p3

– =
 ug

– ur
– db

+
,   (9.20) 

similar to the notation and composition of the proton and antiproton in the Standard 

Model and in quantum chromodynamics. However, within the framework of the Alge-

bra of signatures, the «proton» and «antiproton» consist of «quarks» and «antiquarks», 

which allows us to outline ways to solve the problem of the coexistence of matter and 

antimatter. In addition, metric-dynamic models given by the Algebra of signatures are 

obtained in a more straightforward and informative way. For example, regard a multi-

layered metric-dynamic model of the «proton» in the state (9.9): 
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Fig. 9.1. An «proton» core essentially consists of the combination of a core  

with a valence dr
+-«quark» and two valence ug

– and ub
–-«antiquarks».  

Three internal particelles of valence «quarks» are in constant random motion  

and intertwining with each other 
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When averaging in homogeneous terms of the metrics (9.22) through (9.30), we 

obtain a set of metrics (6.32), describing the metric-dynamic state which we have 

dubbed an «positron». However, it should be expected that the range of the «proton» 

core, consisting of three «quarks», is greater than the radius of the «positron» core, as 

the three «quarks» of the core repel one another away from their common center, where 

we set r = 0. 

The problem of confinement of one «quark» and two «antiquarks» is immediately 

solved, because each «quark» or «antiquark» is an unstable «convex-concave» state of 

the vacuum extension. Only together, do they form a conditionally concave vacuum 

state with a stable average, thus forming an «proton» (Figure 9.1). 

The average set of metrics (9.22) through (9.30) is a part of the solution of the 

simplified third Einstein field equation (6.21), as well as a set of metrics (6.32). 

The «quarks» ug
–, ub

–, dr
+ are in chaotic motion with respect to the common center 

at r = 0 and relative to one other (Figure 9.1). On the average, they will thus make up 

an «proton»: <rg> = r = 0, <rb> = r = 0, <rr> = r = 0. Therefore, we have to use not 

only the metric-dynamic but also the statistical description of intranuclear processes; a 

fuller discussion of this may be found in (Batanov 2017). 

The mathematical methods which have been briefly touched upon in Sections 1 

to 3 of this article, and developed more fully elsewhere (Gaukhman 

2007/2008/2009/2017). These allow one to retrieve information on a variety of subtle 

processes and sub-processes that occur within the «proton» core, as in its outer shell, 

from the set of metrics (9.22) through (9.30) 

10. The «neutron» 

In modern nuclear physics, the neutron consists of two d-quarks with a charge of 

(–1/3)e and a u-quark with a charge (2/3)e (where е – an electron charge) 

n = ddu.      (10.1) 

As a result of this combination, a neutron is an electrically neutral particle with 

zero net charge (–1/3) e + (–1/3) e + (2/3) e = 0. 
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However, the desired result is achieved in the case of the rankings which we have 

outlined, consisting of four signatures. Therefore, the «electrically» neutral «particle» 

(«neutron») may have the following topology (node) configuration: 

 

where: 

10 metrics are of the form (6.22) with signature (+ + + +): a white iw
+-«quark»; (10.2) 

10 metrics are of the form (6.22) with signature (– – – –): a white iw
–-anti-2-quark. 

(10.3) 

White «quarks» are so named because they are almost invisible within the core of 

the «neutron», since from the point of view of topology, they are a point of (8.13) and 

an anti-point of (8.14). Thus their presence in the «neutron» has not been observed 

experimentally, and thus do not make up part of the Standard Model. 

Thus, under the methods of the Algebra of signatures, eight possible states of the 

«neutron» can be represented as: 

n1
0 = iw

–db
+dg

+ur
–, n2

0 = iw
–dr

+dg
+ub

–, n3
0 = iw

–dr
+db

+ug
–, n4

0 = iw
–dr

+db
+ug

–, (10.4) 

n5
0 = iw

+db
–dg

–ur
+, n6

0 = iw
+dg

–dr
–ub

+
, n7

0 = iw
+db

–dr
–ug

+, n8
0 = iw

+db
–dr

–ug
+, 

similar to the neutron in the Standard Model (10.1). 
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Due to the complicated «intracore» topological «metamorphosis», any additive 

four – «quark» combination (10.2) can be reconstructed so that the inside of the vac-

uum formation will consist of an «proton» and an «electron»: 

 

Apparently, this rebuilding («unleashing») of a topological node inside the core, 

the «neutron», leads to the decomposition reaction: 

n  p+ + e- + e,      (10.6) 

where e is an «neutrino». 

Note: Metric-dynamic models of various grades «neutrino» are considered in 

(Gaukhman 2008). 

11. The hydrogen «atom» 

Compared with the «neutron», a substantially more stable neutral vacuum for-

mation is the core of the «atom» of hydrogen. 

According to astronomical observations, visible matter in the Universe consists 

of approximately three quarters hydrogen and approximately a quarter helium, with the 

other chemical elements accounting for only around two percent. 

A neutral atom of deuterium is composed of one proton, one neutron and one 

electron. As part of the Algebra of signatures, it turns out that the «atom» of deuterium 

is composed of an «proton», an neutron and an «electron». The rank (topological) 

equivalent nodal configuration of such a region of the vacuum is as follows: 
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Such combinations can create a set that reflects the possibility of «color» combi-

natorics of intracore metamorphosis. But the topological configuration of the «unit» 

always remains the same: three u-«quarks», three d-«quarks», one i-«quark» and one 

e-«quark» («electron»). We denote this topological «node» in the following way: 

1Н = 3u3die,      (11.2) 

Taking into account the topological properties of the metric with the appropriate 

signatures (8.13) through (8.16), we find that the «node» consists of three twisted «to-

rahs», four oval surfaces and a «point». 

Similarly, all the known chemical elements of the Mendeleev’s periodic table 

could be constructed, or following up on our previous image, braided, whereby the 

average size of their nuclei rn would depend on the number of «quarks» A forming the 

«topology nodes»: rn ≈ ½А1/3r6 ≈ ½ А1/3·10–13cm. 

It is tempting to postulate that these discrete radii in stable vacuum states form a 

Fibonacci or other Lucas sequence. To follow up on this idea, a task which we shall not 

attempt here, an appropriate starting point would be to apply equation (7.8) with rk = r6. 

12. «Fermions» in the Algebra of signatures 

Having a set out of 16 colored «quarks» (9.15) through (9.18) and (10.3) (as sum-

marized in table 12.1) and understanding their topological features, all fermions (me-

sons and baryons) from the Standard Model can be braided. 

Table 12.1 

«Quarks» «Antiquarks» 

10 metrics 

type (6.22) 

or (12.1) 

with signature: 

«quark» 

10 metrics 

type (6.22) 

or (12.1) 

with signature: 

«antiquark» 

(+ – – –) 
e+-«quark», or 

«electron» 
(– + + +) 

e–-«antiquark», 

or «positron» 

(+ + + –) 

(+ + – +) 

(+ – + +) 

dr
+-«quark» 

dg
+-«quark» 

db
+-«quark» 

(– – – +) 

(– – + –) 

(– + – –) 

dr
–-«antiquark» 

dg
–-«antiquark» 

db
–-«antiquark» 

(+ – – +) 

(+ – + –) 

(+ + – –) 

ur
+-«quark» 

ug
+-«quark» 

ub
+-«quark» 

(– + + –) 

(– + – +) 

(– – + +) 

ur
–-«antiquark» 

ug
–-«antiquark» 

ub
–-«antiquark» 

(+ + + +) 
iw

+-«quark» 

(«invisibles») 
(– – – –) 

iw
–-«antiquark» 

(«anti-invisibles») 
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where, for example, 
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In quantum chromodynamics, mesons are composed of a quark and an antiquark, 

and are given by: 

   ззккгг qqqqqqqqqqM
3

1
 ,   (12.5) 

where q
+ ( = b, g, r) is a quark (or antiquark) color triplet, and q

- is an antiquark 

color triplet. 

Baryons composed of 3 quarks, and are given by: 

 qqqB
6

1
 ,      (12.6) 

where  are completely antisymmetric tensor. 

«Mesons» and «baryons» are formed in the same way in the Algebra of signatures. 

Consider a specific example: three types of pi-mesons subject to strong interactions 

have the quark structure: 

  .,
2

1
, 0   dudduudu      (12.7) 

In the Algebra of signatures, such as the meson + = u- d + is represented as 

 

for which each signature corresponds to the set of ten metrics of the type (12.1). 

Even from within these ranks it is seen that such a convex-concave vacuum for-

mation cannot be stable. They can arise from this topological configuration, but in this 
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way, they instantly disappear, blur together or collapse to nodes resulting from the in-

tertwining of the inside vacuum currents in the curved region of the vacuum. 

In turn, the «quark» structure: 

   dduu
2

10      (12.9) 

can have the following signature (topological) analogues: 

 

Similarly, under the Algebra of the signature all known mesons and baryons from 

the Standard Model can be braided. 

The Algebra of signatures differs from the Standard Model only in the presence 

of its other «invisible»: ib
+-»quark» and ib -»antiquark». 

13. «Bosons» in the Algebra of signatures 

The local part of the flat outer side of the vacuum region is described by the met-

ric (8.1): 

ds(-)2 = с2dt2 – dx2 – dy2 – dz2 = ηij
(-)dxi

 dxj with the signature (+ – – –), (13.1) 

where: 


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
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)(
ij ,     (13.2) 

and the same lengths of the inside of the vacuum region is described by the metric (8.2) 

ds(+)2 = –с2dt2 + dx2 + dy2 + dz2 = ηij
(+)dxi

 dxj with signature (– + + +) 

where: 




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)(

ij .     (13.3) 



Центр научного сотрудничества «Интерактив плюс» 
 

58     www.interactive-plus.ru 

Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0) 

As part of the Algebra of signatures, weak perturbations of a two-way vacuum 

over a given 2-braid (averaged metric) take the form: 

½(ds(–)2 + ds (+)2) = ½(ηij
(–) + hij

(–) + ηij
(+) – hij

(+)) dxi
 dxj = ½(hij

(–) – hij
(+)) dxi

 dxj
, (13.4) 

where hij
(–) and hij

(+) are related components of the tensors defining slight bilateral de-

viations from the state of the original uncurved vacuum region. 

We assume a fixed reference system in a fashion similar to the fixing of the elec-

tromagnetic vector potential in the Lorentz gauge condition in electrodynamics (Lan-

dau and Lifshitz 1988). We further impose additional conditions on hij
(–) and hij

(+), so 

that the first vacuum Einstein equation (1.6) is reduced to the wave equation 

.0)(
2

11 )()(

2

2

2













 

ijijij hh
tс

R      (13.5) 

In a small area of the vacuum, the wave disturbance can be regarded as a plane 

wave. If the direction of wave propagation is represented along the x-axis, a suitable 

choice of the reference system will make the components hij
(–) and hij

(+) vanish, as well 

as the components 

h22
(–) = – h33

(–)  h+
(–) and h32

 (–) = h23
(–)  h

(–).    (13.6) 

h22
(+) = – h33

(+)  h+
(+) and h32

 (+) = h23
(+)  h

(+). 

Such a wave disturbance is a quadrupolar transverse wave. The polarization of 

this wave in the u-z plane is defined by the following tensor of the second rank: 
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 a, b = 2, 3.   (13.7) 

The separate components, h+
(–) and h

(–), h+
(+) and h

(+)
,
 describe two independent 

polarization planes of the quadrupolar wave disturbances which differ from each other 

by a rotation through an angle of π/4. 

The average second-rank tensor: 
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    (13.8) 

can describe, under certain phase relationships, not only the quadrupolar but also the 

dipolar, including linear, elliptical and circular polarization wave disturbances of a 

two-sided extension. 
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Thus, the first Einstein field equation (1.6) is linearized for small perturbations of 

the metric, i.e., it becomes the wave (13.5), and allows the distribution of different 

types of wave disturbances on the two-sided vacuum region. 

The problem of propagation of wave disturbances throughout the vacuum can be 

considered in a different way. We start with the metric (13.1) 

ds(–)2 = с2dt2 – dx2 – dy2 – dz2 = 0 with the signature (+ – – –).  (13.9) 

This determines not only the metric-dynamic properties of the flat outer side of 

the vacuum region, but also the spread of the light beam in a vacuum at a forward speed 

of сdt = (dx2 + dy2 + dz2)1/2. 

In this metric (13.3): 

ds(+)2 = – с2dt2 + dx2 + dy2 + dz2 = 0 with signature (– + + +).  (13.10) 

determines not only the metric-dynamic properties of the flat inner side of the vacuum 

region, but also the spread of the light beam in a vacuum at a speed from the opposite 

direction – сdt =–(dx2+dy2+dz2)1/2. 

Recall that the quadratic form (15.9) and (15.10) can be represented as a product 

of linear (affine) forms (1.37) and (1.38): 

ds(–)2 = с2dt2 – dx2 – dy2 – dz2 = сdtсdt– dxdx– dydy– dzdz,  (13.11) 

ds(+)2 = – с2dt2 + dx2 + dy2 + dz2 = – сdtсdt+dxdx+dydy+dzdz,  (13.12) 

where, according to (1.39) through (1.42): 

 

Since the segments from (13.13) through (13.16) are perpendicular to each other: 

ds(–) ds(–) ds(+)  ds(+), 

the language of quaternions is the most effective form to handle them. 

In that case, instead of the linear form (13.13), we use quaternion: 

z = – x0 + ix1 + jx2 + kx3, stignature {– + + +}   (13.17) 
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and instead of (13.15), the complex conjugate quaternion: 

z* = x0 -xi3 – jx2 – kx1, stignature {+ – – –}   (13.18) 

In general, the Algebra of signatures admits the existence of 16 types of «color» 

quaternions with all possible stignatures:  

 

By a straightforward calculation, it is easy to see that the sum of all 16 types of 

«color» quaternions (13.19) is equal to zero 

z1 + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12 + z13 + z14 + z15 + z16 = 0,  (13.20) 

so that we can consider that the vacuum itself satisfies the condition. 

Equivalent stignatures from (13.20) take on the form: 
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stignatures form a structure similar to the signature structure and antisymmetric matrix 

referred to earlier in this paper: 

       

       
       

       







 sstignature*    (13.22) 

A more detailed analysis of the 16 aggregate stignatures and the «colored» qua-

ternions is given in (Gaukhman 2007). 

13.1. The «photon» and «antiphoton» 

Because, for example, the linear forms (13.13) and (13.14) are mutually perpen-

dicular in relation to the other arcs, the harmonic disturbance, extending on the total 

extent of the metric (i.e., the outside of the vacuum) can be written as: 

cos{(2/)(сt–x–y–z)} + i sin{(2/)(сt–x–y–z)} = ехр {i (2/)(сt–x–y–z)}= 

 ехр {i( t – k r)}.      (13.23) 

We call such a harmonic disturbance of the metric an «photon» having a metric 

with stignature {+ – – –}. 

Similarly, for mutually perpendicular linear forms (13.15) and (13.16) we have 

the harmonic disturbance inside the vacuum region: 

cos{(2 /)(–сt+x+y+z)} + i sin{(2/)(–сt+x+y+z)} =  

ехр {i (2/)(–сt+x+y+z)}= ехр –{i( t – k r)}.   (13.24) 

which we call «antiphoton» with stignature {– + + +} because it extends in the opposite 

direction with respect to the «photon». (This is not to be confused with the antimatter 

particle of the photon, which is of course the photon itself). 
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13.2. The W±-«bosons» 

Similar constructions show that six signature ranks: (13.25) 

 

correspond to three colored states of the W+-«boson»: 

 

and three colored states of the W–-«boson» 

 

where i, j, k are the imaginary units forming an anticommutative algebra: 

i 2= j 2= k 2 = ijk = –1 and ij + ji = 0.    (13.28) 
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13.3. The Z0-«bosons» 

The six signature ranks: 

 

correspond to the six color states of the Z0-«boson»  
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13.4. The «graviton» 

In the Algebra of signatures, another «boson» appears, namely, the «graviton».  

 

whereby the ζm entities satisfy the anticommutative relations of a Clifford algebra. 

ζm ζk + ζk ζm = 0 for m  k, ζm ζm = 1, or ζm ζk + ζk ζm = 2δkm, (13.32) 

where δkm is the Kronecker delta (δkm = 0 for m  k and δkm = 1 for m = k). One way 

to define objects and ζm entities and the Kronecker delta δkm is presented below: 
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14. Conclusion 

In this paper, supported by a 16-sheeted atlas of metric spaces with sixteen types 

of signatures (topologies) (8.12) and a 32-page set of affine subspaces with stignatures 

(13.21), we obtain the metric-dynamic models of virtually all elements of the Standard 

Model. 

Not considered in this article were the analogues of neutrinos, muons, tau-leptons 

and Higgs bosons. Metric – dynamic models of vacuum entity data (except for the 

Higgs boson), and the interaction between the spherical vacuum formations («parti-

cles») are shown by Gaukhman (Gaukhman 2008). 
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Fig 14.1. Components of the Standard Model 

 

The massless geometrophysics proposed here is completely missing the concept 

of mass, so there is no need to introduce fields beyond those implicit in the field equa-

tions. This mechanism allows for spontaneous electroweak symmetry breaking, and 

accordingly the quantum of this field is the Higgs boson. 

A geometrized description of all force interactions (gravitational, electromag-

netic, electroweak, nuclear and torsion) is partly given in (Gaukhman 2008/2009/2017) 

and will be elaborated in the next article in English by the author. 

Mathematical techniques to extract a variety of information about the local enti-

ties of the plurality of Einstein field equations solutions are shown in an article by 

Gaukhman (Gaukhman 2007/2017). 

An article by Krivonosov & Lukyanov (2009) shows that the Yang-Mills equa-

tions in four-dimensional space with conformal connection torsion reduce to Einstein's 

equations, Maxwell's equations, and another group of 10 of second-order differential 

equations. Another article by the same authors (Krivonosov & Lukyanov, 2011) pro-

vides a general solution to these equations for a centrally symmetric metric in the ab-

sence of an electromagnetic field, and also shows that among particular solutions of 

these equations, expressed in terms of elementary functions, there is a solution which 

is a Kottler metric. 
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In this article Kottler solutions are at the heart of model representations of the 

metric-dynamic vacuum organization as a whole given in (5.4) through (5.13), includ-

ing the local spherical vacuum formations such as (6.22), (6.32) and (12.1). Therefore, 

the framework of the Algebra of signatures provides a complete metric-dynamic 

«quark» model (table 12.1) and practically all analogues of fermions and bosons (sec-

tion 13.1 through 13.4) included in the Standard Model are also included in this frame-

work, in line with the conclusions of (Krivonosov & Lukyanov 2009/2011). These may 

then be proposed as a set of analytical solutions of the Yang-Mills theory. 

Note that, if a set of metrics form (6.22) (6.32) and (12.1), then instead of: 

r5 ~ 4,9·10–3 cm: ~ «biological cage» inner core; 

r6 ~1,7·10–13 cm: ~ core of an elementary «particle»; 

r7 ~ 5,8·10–24 cm: ~ core of an «protoquark»; 

we could substitute, for example, 

r2 ~ 1,2·1029 cm: ~ «metagalaxy» inner core; 

r3 ~ 4·1018 cm: ~ «galaxy» inner core; 

r4 ~ 1,4·108 cm: ~ «star» or «planet» inner core, 

continuing in an analogous manner, we obtain a geometrophysics and a topologi-

cal description of the extent of the vacuum also on astronomical scales. 

It appears to the author that this results in a universal metric-dynamic model of 

the closed universe which is, at the same time, on the average Ricci-flat; this universe 

is then populated by an infinite number of spherical vacuum formations of various 

sizes. 

The usual probabilistic formalism of the Standard Model is still valid, as the core 

and «particelles» are stable vacuum formations constantly and randomly moving under 

the influence of the neighboring stable vacuum formations and a variety of other vac-

uum fluctuations. Study of chaotic motion of the vacuum nucleation has led to an al-

ternate derivation of the Schrödinger equation (Batanov 2017), and (Gaukhman 2008) 

shows the relationship of the Algebra of signatures to quantum theory. 
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The Algebra of signatures proposed in this article is not an alternative theory op-

posed to general relativity, quantum field theory and superstring theory, but rather their 

symbiosis via a full geometrization of physical laws. 
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