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ЛИНЕЙНАЯ РЕГРЕССИЯ 

Аннотация: в статье рассматривается один из методов машинного обу-

чения – линейная регрессия. 
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Основные определения 

Определение 1. Регрессия – математическое выражение, отражающее зави-

симость математического ожидания одной случайной величины от других слу-

чайных величин. 

Определение 2. Функционал – отображение RXa : , где X – метрическое 

пространство признаков классифицируемого объекта, а R – множество действи-

тельных чисел. 

Определение 3. Машинное обучение – нахождение отображения, в частно-

сти алгоритма классификации, который строится по множеству, называемому 

обучаемой выборкой, а качество обучения проверяется по множеству, называе-

мому тестовой выборкой. 

Введение 

Регрессия – это модель, с помощью которой мы получаем наш функционал 

для оптимизации. Естественно, построение моделей одна из ключевых составля-

ющих в машинном обучении. Используя разные модели, мы подбираем функци-

онал, с помощью которого будет достигаться минимальное отклонение от жела-

емого результата. 

Постановка проблемы 

Необходимо ознакомиться с принципами работы линейной регрессии. 
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Описание метода линейной регрессии 

Суть задачи классификации заключается в построении алгоритма классифи-

кации по обучаемой выборке. Пусть у нас имеются классы, представленные в 

виде чисел. Тогда, используя функцию регрессионной зависимости f, имеем мо-

дель данных: 

𝑦(𝑥𝑖) = 𝑓(𝑥𝑖 , 𝑎) + 𝜀𝑖 

где 𝜀𝑖 – случайные величина с некоррелированным гауссовским шумом c нуле-

вым математическим ожиданием, имеющие плотность распределения: 
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Используя метод максимального правдоподобия: 
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Теперь рассмотрим метод наименьших квадратов: 

𝑄(𝑎, 𝑋𝑙) =∑𝑤𝑖(𝑓(𝑥𝑖 , 𝑎)-𝑦𝑖)
2 →
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Как данный метод очень похож на метод правдоподобия, при условии, что 

все невязки 𝜀𝑖 имеют нормальное распределение, некоррелированны и с одина-

ковой дисперсией. 

Перейдем к рассмотрению многомерной линейной регрессии. В данном слу-

чае функция f выглядит таким образом: 

𝑓(𝑥𝑖 , 𝑎) =∑𝑎𝑗𝑓(𝑥𝑗)
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В матричном виде функционал запишется как: 

𝑄(𝑎, 𝑋𝑙) = ||𝐹𝑎-𝑦||2 → 𝑚𝑖𝑛𝑎 

где F – матрица l*n, объект – признаки. 
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Решением для данной задачи будет являться векторов параметров 𝑎, кото-

рый равен: 

𝑎 = (𝐹𝑡𝐹)-1𝐹𝑡𝑦 

В силу линейной возможной линейной зависимости столбцов матрицы F, 

вектор параметров 𝑎 по норме может получится очень большим, тем самым отоб-

ражение будет очень чувствительно к шумам. Для того, чтобы бороться с увели-

чением весов введем дополнительное слагаемое в целевой функции: 

𝑄(𝑎, 𝑋𝑙) = ||𝐹𝑎-𝑦||2 +
1

2𝜎
|𝑎| → 𝑚𝑖𝑛𝑎 

где 𝜏 =
1

2𝜎
 – параметр регуляризации. 

Заключение 

В данной работе был рассмотрены принципы работы линейной регрессии. 
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