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Аннотация: в работе предлагается математическая модель поведения 

ледяного покрова при нагружении. Для решения поставленной краевой задачи 

для дифференциального уравнения в частных производных используется обоб-

щенное дискретное преобразование Фурье и аппарат почти-периодических 

функций. 
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Для России постоянно существует необходимость в освоении северных 

территорий, создании в условиях холодного климата ледовых переправ. Свой-

ства льда столь разнообразны, что изучение прочностных свойств некоторого 

участка льда в рамках единой для рассматриваемой области математической 

модели иногда бывает затруднительным. Однако, если осреднить взаимодей-

ствие между частицами льда, то можно считать его моделью изотропного 

сплошного упругого тела и использовать для изучения его прочностных харак-

теристик методы теории упругости. 

Математическая модель поведения ледяного покрова при нагружении опи-

сывается дифференциальным уравнением в частных производных, [1] 
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где ),( yxww   – искомая функция изгиба, ),( yxqq   – внешняя нагрузка, 

k  – коэффициент жесткости упругого основания, D  – коэффициент постели. 

Перепишем уравнение (1) для удобства в виде 

2 2 ,w p w Q    (2) 
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Таким образом, ледяную плиту можно рассматривать как тонкую плиту на 

упругом основании. 

В данной работе предлагается использование аппарата почти-

периодических функций, [2], для определения функции прогиба как решения 

дифференциального уравнения (2) для области, представляющей собой полосу, 

на продольных кромках которой заданы условия жесткого защемления. 

Постановка задачи. Найти в области, представляющей собой полосу 

, 0 1x y     , непрерывную вместе со своими частными производными 

до четвертого порядка функцию ( , )w x y , удовлетворяющую уравнению (2), ес-

ли на границах заданы условия: 
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Решение. Будем считать, что функция   ( , ) 0,1y

WQ x y П , то есть предста-

вима в виде ряда 

0

0

( , ) ( ) ( ) i xQ x y q y q y e 




  , 

   – счетное множество действительных чисел, которые не сгущаются к ну-

лю. 

Также будем считать, что функция прогиба ( , )w x y    0,1y

WП , то есть 

имеет вид 

0( , ) ( ) ( ) .i xw x y A y A y e 




   

Применяя к уравнению (2) обратное обобщенное дискретное преобразова-

ние Фурье 
1

0
W , [3], получим следующие обыкновенные дифференциальные 

уравнения 
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где 0 00 0( ), ( ), ( ), ( ).А А y А А y q q y q q y       

Решения уравнений (3) и (4) имеют вид: 

0  , 0 0 1 2 3 4( ) ( ) cos sin cos sin ,n y n y n y n yA y a y d e ny d e ny d e ny d e ny       

где 0/ 2, ( )n p a y  – некоторое частное решение уравнения (3); 

0  , 1 2 3 4( ) ( ) cos sin cos sin ,y y y yA y a y c e y c e y c e y c e y 


   
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где 
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p p      
     )(ya  – частное решение урав-

нения (4), определяющееся при каждом  . 

Итак, искомая функция прогибов имеет вид 

 

1 2 3 4

1 2 3 4

0

0( , ) ( ) cos sin cos sin

( ) cos sin cos sin .i x

n y n y n y n y

y y y y

w x y a y d e ny d e ny d e ny d e ny

a y c e y c e y c e y c e y e

 

  




   

     

         

 
Константы ( ), , 1,4m m mс c d m    находятся из граничных условий, то 

есть из систем уравнений (5) и (6): 
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  (5) 
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Определители систем (5) и (6) не обращаются в 0 ни при каком 0  . Ре-

шения систем (5) и (6) существуют и единственны. 

Рассмотрим частный случай. Пусть нагрузка ( )Q Q y  зависит только от 

переменной y . Тогда из системы (6) постоянные 0mс  , а постоянные 
md  опре-

деляются единственным образом из системы (5). Функция прогиба имеет вид 

0 1 2 3 4( ) ( ) cos sin cos sin .n y n y n y n yw y a y d e ny d e ny d e ny d e ny        (7) 

На рисунке 1 представлен график функции прогиба при изгибающей 

нагрузке 
24 16Q y  , 2.p   

Функция прогиба имеет вид 

2( ) 1 4 0.1195 cos( ) 2.2317 sin( ) 0.8805 cos( ) 1.4707 sin( ).y y y yw y y e y e y e y e y      

 

Рис. 1 

 

Максимального прогиба 0222.0z  плита достигает в точке 0.525y  . 
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