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Аннотация: рассматривается задача обтекания аэродинамического про-

филя плоским потенциальным потоком идеальной несжимаемой жидкости. Ап-

проксимация контура профиля комплексным кубическим сплайном в комбинации 

с методом вихревого слоя позволяет получить полуаналитическое выражение 

для комплексного потенциала скорости во всей области течения. Для этого вся 

область течения разделяется на две односвязные области, в каждой из кото-

рых выделяется однозначная ветвь логарифмической функции. Данные полуана-

литические выражения для потенциала существенно ускоряют процесс вычис-

ления основных характеристик течения в произвольной точке области обтека-

ния. 
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Задача Неймана. Классическая постановка внутренней задачи Неймана 

имеет следующий вид. В области Ω необходимо найти функцию 𝑢 ∈ 𝐶2(Ω) ∩

𝐶1(Ω̅), удовлетворяющую следующим условиям: 

∆𝑢 = 0, в области Ω 

𝜕𝑢

𝜕n
|𝜕Ω = 𝑢1(𝑥), 𝑢1 ∈ 𝐶(𝜕Ω), 
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где ∆ – оператор Лапласа, 𝑛 – внешняя единичная нормаль к границе области Ω. 

На неограниченных областях Ω (внешняя задача) добавляется дополнительное 

условие ограниченности на бесконечности искомой функции 𝑢. 

Постановка задачи обтекания. В работе [1, с. 19] подробно изложен метод 

построения аэродинамического контура профиля по известным опорным точкам 

(т.н. «каркас профиля»). Данный алгоритм позволяет получить профиль любой 

сложности, а также с успехом применить метод вихревого слоя для поиска ком-

плексного потенциала скорости. 

Математическая постановка имеет следующий вид: 

𝑤(𝑧) = 𝑈∞𝑒-𝑖𝛼𝑧- ∮ 𝛾(𝑠) ln(𝑧-𝑧(𝑠))𝑑𝑠, (1) 

𝑈𝑛 = 0, 

где 𝑤(𝑧)   - комплексный потенциал скорости; 

𝑈∞   - скорость набегающего потока; 

𝛾(𝑠)   - вихревой слой; 

𝛼   - угол атаки; 

𝑈𝑛   - условие непротекания. 

Уравнение (1) представляет собой метод наложения потенциальных пото-

ков для решения задач обтекания тел произвольной формы плоскопараллельным 

безвихревым потоком идеальной несжимаемой жидкости. Везде далее 𝛼 = 0. 

Дифференцируя (1) по 𝑧 получаем сопряженную скорость течения 

𝑉 =
𝑑𝑤

𝑑𝑧
= 𝑈∞-

𝜕

𝜕𝑧
∮ 𝛾(𝑠) ln(𝑧-𝑧(𝑠))𝑑𝑠. (2) 

Во избежание путаницы введем также комплексную скорость 𝑈 = 𝑉̅ 

𝑉 = 𝑢-𝑖𝑣, 

𝑈 = 𝑢 + 𝑖𝑣, 

где 𝑢, 𝑣 – компоненты вектора скорости. 

В связи с заменой контура профиля ломаной (рисунок 1) 

𝛾(𝑠) = 𝛾𝑘 +
(𝛾𝑘+1-𝛾𝑘)𝑠

Δ𝑠𝑘
, 𝑧(𝑠) = 𝑧𝑘 +

(𝑧𝑘+1-𝑧𝑘)𝑠

Δ𝑠𝑘
 



Scientific Cooperation Center "Interactive plus" 
 

3 

Content is licensed under the Creative Commons Attribution 4.0 license (CC-BY 4.0) 

𝑧(𝑠) = 𝑧𝑘 +
(𝑧𝑘+1-𝑧𝑘)𝑠

Δ𝑠𝑘
, Δ𝑠𝑘 = |𝑧𝑘+1-𝑧𝑘| 

𝑠 ∈ [0, Δ𝑠𝑘], 𝑘 = 1, 2, … , 𝑛 

интеграл в правой части (2) заменяется конечной суммой: 

 
Рис. 1. Расположение точечных вихрей и точек на контуре 

 

𝜕

𝜕𝑧
 ∮ 𝛾(𝑠) ln(𝑧-𝑧(𝑠))𝑑𝑠 = ∮

𝛾(𝑠)

𝑧-𝑧(𝑠)
𝑑𝑠 =

=
1

2𝜋𝑖
∑ ∫

(𝛾𝑘+1-𝛾𝑘)𝑠 + 𝛾𝑘𝛥𝑠𝑘

(𝑧-𝑧𝑘)𝛥𝑠𝑘-(𝑧𝑘+1-𝑧𝑘)𝑠
𝑑𝑠, (3)

𝛥𝑠𝑘

0

𝑛

𝑘=1

 

то есть интеграл по контуру заменяется интегралом по ломаной, аппроксимиру-

ющей этот контур. 

После взятия интеграла (3) и подстановки его в равенство (2) придем к вы-

ражению для комплексно-сопряженной скорости: 

𝑉 = 𝑈∞-
1

2𝜋𝑖
∑

Δ𝑠𝑘

𝑧𝑘+1-𝑧𝑘
(𝛾𝑘+1-𝛾𝑘 + {

(𝑧-𝑧𝑘)(𝛾𝑘+1-𝛾𝑘)

𝑧𝑘+1-𝑧𝑘
+𝛾𝑘} ln

𝑧-𝑧𝑘+1

𝑧-𝑧𝑘
) (4)

𝑛

𝑘=1

 

Для нахождения 𝛾𝑘 надо произвести коллокацию с учетом граничного усло-

вия, состоящего в том, что на граничных элементах (на звеньях ломаной) ско-

рость направлена по касательной к этим элементам. В качестве коллокационных 

точек берутся середины элементов. Подробное описание последующих действий 

можно найти в работе [2, с. 12]. В результате коллокации задача сводится к ре-

шению системы линейных алгебраических уравнений относительно 𝛾𝑘. В каче-

стве замыкания системы уравнений выступает уравнение 

𝛾1 + 𝛾𝑛+1 = 0. 
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Это условие Кутта-Жуковского, устраняющее неоднозначность решения за-

дачи Неймана во внешности контура при задании производной в бесконечности. 

Физически оно означает, что линии тока при обтекании крылового профиля 

плавно сходят с острой кромки. 

Комплексный потенциал. Проинтегрировав формально равенство (4) по 𝑧 

получим формулу для комплексного потенциала скорости: 

𝑤(𝑧) = 𝑈∞𝑧

+
1

2𝜋𝑖
∑

𝛥𝑠𝑘

2𝐴𝑘

𝑛

𝑘=1

(𝐵𝑘(𝑧𝑘 + 𝑧)-𝐶𝑘𝐴𝑘 ln(𝑧-𝑧𝑘+1)

+
(𝑧𝑘-𝑧)(𝐶𝑘𝑧𝑘-𝐵𝑘𝑧-2𝛾𝑘𝑧𝑘+1)ln (

𝑧-𝑧𝑘+1
𝑧-𝑧𝑘

)

𝐴𝑘
) , (5) 

где 

𝐴𝑘 = 𝑧𝑘+1-𝑧𝑘; 

𝐵𝑘 = 𝛾𝑘+1-𝛾𝑘; 

𝐶𝑘 = 𝛾𝑘+1 + 𝛾𝑘; 

Константа интегрирования в равенстве (5) опущена, так как она не несет 

большой смысловой нагрузки. 

Сложность в использовании формулы (5) для нахождения комплексного по-

тенциала скорости 𝑤 (𝑧), а, следовательно, и для нахождения вещественного по-

тенциала 𝜑 (𝑧) = Re[𝑤(𝑧)] заключается в наличии множителя ln (𝑧-𝑧𝑘+1). 

Выделение однозначных ветвей Ln (z). Из теории известно [3, с. 34], что 

функция 

Ln(𝑧) = 𝑙𝑛|𝑧| + 𝑖𝐴𝑟𝑔(𝑧) = 𝑙𝑛|𝑧| + 𝑖(𝜃 + 2𝜋𝑘), 

𝜃 ∈ [0, 2𝜋], 𝑘 ∈ ℤ 

является многозначной функцией. 

В любой односвязной области 𝐷, которая не содержит замкнутых кривых, 

обходящих точку 𝑧 = 0, можно выделить бесчисленное множество непрерывных 

и однозначных ветвей многозначной функции 𝑤 = Ln (z), значения которых в 
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каждой фиксированной точке отличаются друг от друга слагаемыми 2𝑘𝜋𝑖. Каж-

дая такая ветвь Ln (z) будет осуществлять взаимно однозначное отображение об-

ласти 𝐷. 

 

Рис. 2. Выделение односвязных областей 

 

Разобьем всю область движения, которая не является односвязной на две 

односвязные области 𝐷+ и 𝐷-, граница между которыми состоит из сепаратрисы 

течения и профиля крыла (рисунок 2). 

Тогда в каждой односвязной области можно выделить главную ветвь лога-

рифма Ln (z): 

ln+(𝑧-𝑧𝑘+1) = ln|𝑧-𝑧𝑘+1| + 𝑖𝐴𝑟𝑔+(𝑧-𝑧𝑘+1): 𝑧 ∈ 𝐷+, 

 ln-(𝑧-𝑧𝑘+1) = ln|𝑧-𝑧𝑘+1| + 𝑖𝐴𝑟𝑔-(𝑧-𝑧𝑘+1): 𝑧 ∈ 𝐷-. 

 

Рис. 3. К вычислению главных аргументов логарифмических функций 

 

Экспериментальным путем с помощью численного расчета было установ-

лено, что аргументы 𝐴𝑟𝑔+ и 𝐴𝑟𝑔- в областях 𝐷+ и 𝐷- необходимо вычислять с 

разрезами -
𝜋

2
 и 

𝜋

2
 соответственно (рисунок 3). 

Таким образом, среди всех ветвей многозначной функции (5) были выде-

лены 2 однозначные ветви, осуществляющие отображения областей 𝐷+ и 𝐷-: 
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𝑊±(𝑧) = 𝑉̅∞𝑧

+
1

2𝜋𝑖
∑

𝛥𝑠𝑘

2𝐴𝑘

𝑛

𝑘=1

(𝐵𝑘(𝑧𝑘 + 𝑧)-𝐶𝑘𝐴𝑘 ln±(𝑧-𝑧𝑘+1) +

+
(𝑧𝑘-𝑧)(𝐶𝑘𝑧𝑘-𝐵𝑘𝑧-2𝛾𝑘𝑧𝑘+1)ln (

𝑧-𝑧𝑘+1
𝑧-𝑧𝑘

)

𝐴𝑘
) , (6) 

𝑧 ∈ 𝐷± 

 
Рис. 4. Сравнение результатов интегрирования вещественнозначного 

потенциала методом Рунге-Кутта (рис. 4, B) 

с полуаналитическим решением 

 𝜑±(𝑧) = 𝑅𝑒(𝑤±(𝑧)) (рис. 4, С) 

 

На рисунке 4 показан результат численного интегрирования потенциала ме-

тодом Рунге-Кутта c начальным условием 𝜑±
0 = 𝑅𝑒[𝑤±(𝑠±

0)], (рис. 4, B), и потен-

циал, найденный с помощью функций (6) на линиях тока 𝑆+ и 𝑆- (рис. 4, C), со-

ответственно, где 𝑆+ и 𝑆- – линии тока «обтекающие» профиль сверху и снизу. 

При этом сами линии тока 𝑆+ и 𝑆- полностью лежат в односвязных областях 𝐷+ 

и 𝐷- (рис. 4, A). 
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Путем анализа выходных данных установлено, что модуль разности соот-

ветствующих значений потенциала, полученных этими двумя способами – вели-

чина порядка 1 × 10-7, что указывает на надежность и адекватность нашего ме-

тода линейного приближения – метода граничных элементов. 

Заключение. С помощью полученных функций (6) можно находить значения 

потенциала в любой точке (за исключением сепаратрисы) течения. Данный алго-

ритм выделения однозначных ветвей с успехом использовался в описании коле-

баний (флаттера) сегмента аэродинамического профиля набегающим потоком [4]. 
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