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Аннотация: в работе рассматривается класс гибридных стохастических 

систем, описываемых семейством стохастических дифференциальных уравне-

ний с отклоняющимся аргументом запаздывающего типа. Каждая отдельная 

система семейства определяет определенный режим гибридной системы. Пе-

реходы между отдельными режимами описываются однородной цепью Мар-

кова. Получены достаточные условия, которые гарантируют робастную 

устойчивость системы в смысле асимптотической устойчивости в среднем 

квадратическом при произвольной величине запаздывания и произвольных веро-

ятностях переходы между режимами. 
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Введение 

В последние годы наблюдается рост исследовательского интереса к процес-

сам и системам, математические модели которых описываются обыкновенными 

дифференциальными уравнениями, параметры которых – случайные функции 

времени. Особо выделяют класс гибридных систем, особенностью которых яв-

ляется наличие в пространстве состояний двух компонент: дискретной и непре-

рывной. В тоже время многие реальные процессы в природе и технике имеют 

последействие, т.е. их поведение определяется состоянием не только в текущий 
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момент, но и в предшествующие моменты времени. Типичной гибридной систе-

мой с запаздыванием является динамическая система массового обслуживания 

управляемая на расстоянии Примеры показывают, что поведение систем без 

учета запаздывания, даже при малой его величине, может существенно отли-

чаться от поведения систем с запаздывающим аргументом. Отсюда вытекает 

необходимость и важность изучения систем с запаздыванием. 

1. Постановка задачи 

Рассмотрим гибридную стохастическую систему, описываемую уравне-

нием: 
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где 0    – постоянное запаздывание;  w t  – не зависящий от начального со-

стояния системы (1) стандартный винеровский процесс;  trA ,  trA ,  trD , 

 trD  – постоянные матрицы размеров , , , ;n n n n n n n n      x t  – n-мерный 

вектор состояния; tr  – марковская цепь с дискретным множеством состояний 
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   и  q , INij i j  называются интенсивностями 

перехода. 

Рассмотрим скалярную функцию ( , )V x i  ( IR , IN)nx i   и определим опера-

тор 
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где E  – оператор математического ожидания. Этот оператор называется слабым 

инфинитезимальным оператором процесса  ,t tX x r  или производящим диф-

ференциальным оператором. 
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Цель представленной работы получить достаточные условия асимптотиче-

ской устойчивости в среднем квадратическом (АУСК) системы (1) при произ-

вольном запаздывании и произвольных интенсивностях перехода между режи-

мами  q , INij i j . 

2. Основной результат 

При исследовании устойчивости систем с запаздыванием будем использо-

вать сравнение исходной системы с некоторой системой без запаздывания, кото-

рую будем называть системой сравнения. 

Рассмотрим «укороченную» систему сравнения без запаздывания, которая 

описывается следующим дифференциальным уравнением: 

     ,x t i x t A                         (2) 

где x(t) – n-мерный вектор состояния; А(i) – матрица состояния размера n n . 

Выберем функционал Ляпунова-Красовского в форме: 
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тогда для стохастического процесса  ,t tx r  определенного уравнением (2), 

имеем: 
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Производящий дифференциальный оператор LV < 0, если выполняется не-

равенство: 

    0.T i i  A H HA Q                                     (4) 

Это означает, что для положительно определенной симметричной матрицы 

     Ti iМ М  имеет место равенство: 

     ,T i i i   A H HA Q M                              (5) 

Из уравнения (5) получаем: 

       .T i i i i     A H HA Q M N                       (6) 
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Характерно, что уравнение (6) обеспечивает экспоненциальную устойчи-

вость в среднем квадратическом (ЭУСК) укороченной системы сравнения (2) 

при произвольных интенсивностях перехода  , IN .ijq i j  

Теперь рассмотрим систему (1). Пусть система (2) ЭУСК при произвольных 

ijq , в этом случае, выбирая функционал Ляпунова-Красовского в виде (3) для 

производящего дифференциального оператора, имеем: 
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Производящий дифференциальный оператор LV(x) отрицателен лишь в том 

случае, когда квадратичная форма является отрицательно определенной на ре-

шениях x(t), а по совокупности всех переменных (по совокупности  x t ,  

 x t  ) остается неположительно определенной. 

Тем самым доказана следующая теорема. 

Теорема. Если для некоторых, положительно определенной симметричной 

матрицы M(i) и постоянной положительно определенной симметричной мат-

рицы Q существует положительно определенное решение TН Н  системы 

уравнений 

     ,T i i i   A H HA Q M                                      (7) 

удовлетворяющее системам неравенств 

       0 INT i i i i  D HD M                                      (8) 
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то система (1) АУСК при произвольной величие запаздывания   и произвольных 

интенсивностях перехода ijq . 

Заключение 

В статье рассматривались гибридные стохастические системы с отклоняю-

щимся аргументом запаздывающего типа. Были получены достаточные условия 

асимптотической устойчивости в среднем квадратическом при произвольном за-

паздывании и произвольных интенсивностях переходов между отдельными ре-

жимами. Используя аналогичные результаты в работах [3–6] получены алго-

ритмы синтеза робастного стабилизирующего управления. 
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