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СВЕТОГЕОМЕТРИЯ «ВАКУУМА» И ОСНОВЫ АЛГЕБРЫ СИГНАТУР 

Аннотация: в рамках программы геометризации физики, к которой отно-

сятся работы автора [1–5], рассмотрены физические и математические ос-

новы светогеометрии вакуума и Алгебры сигнатур. Вакуум исследуется посред-

ством зондирования его взаимно перпендикулярными монохроматическими лу-

чами света с различными длинами волн. В результате получается иерархия вло-

женных друг в друга световых 3D-ландшафтов ((m(n-вакуумов). В статье рас-

смотрены неискривленное и искривленное состояния локального участка (m(n-

вакуума на основании математического аппарата Алгебры сигнатур. Сформу-

лировано «вакуумное условие» на основании определения «вакуумного баланса». 

Рассмотрены инертные свойства (m(n-вакуума. Приведено кинематическое 

обоснование возможности разрыва локального участка (m(n-вакуума. На осно-

вании изложенных здесь основ Алгебры сигнатур в статьях [3–5] получены мет-

рико-динамические модели всех элементарных частиц, входящих в состав Стан-

дартной модели. В данной работе вводятся новые понятия, поэтому в конце 

статьи приведен «Указатель определений новых терминов». 

Ключевые слова: вакуум, светогеометрия, пустота, спинтензор, сигна-

тура, стигнатура метрика, аффинное пространство, метрическое простран-

ство, геометризированная физика. 

1. Постньютоновский технический вакуум 

Когда ты сражаешься с монстрами, осте-

регайся, чтобы самому не стать монстром. 

И если ты долго всматриваешься в Бездну, 

то Бездна всматривается в тебя. 

Ф. Ницше 

https://creativecommons.org/licenses/by/4.0/
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«Jenseits Gut und Böse» 

(По ту сторону добра и зла) 

В современной физике вакуум (от лат. vacuus – пустой) – это самый слож-

ный объект, представляемый как наложение множества слоев нулевых осцилля-

ций квантовых (скалярных, векторных, спинорных, тензорных и т. д.) полей, или 

как гобелен повсеместно чрезвычайно плотно намотанных на дополнительные 

измерения невозбужденных суперструн. 

В этой работе мы вначале возвращаемся к представлениям о абсолютно чи-

стом техническом вакууме, как о пустом пространстве, в котором отсутствуют 

материальные частицы. 

Чтобы отличать объективное пустое пространство (т.е. абсолютно чистый 

постньютоновский технический вакуум) от различных вакуумов современных 

теорий, будем для краткости называть его «вакуумом». 

Определение №1.1. «Вакуум» – это реальное 3-мерное пустое простран-

ство без частиц, находящееся вне сознания наблюдателя. 

Впоследствии, по мере развития светогеометрии и Алгебры сигнатур (АС), 

модель «вакуума» будет все более и более усложняться, до обнаружения множе-

ства аналогий с: вакуумом Эйнштейна, вакуумом Дирака, вакуумом Уилера, ва-

куумом де Ситтера, вакуумом Тэрнера – Вилчека, вакуумом квантовой теории 

поля и вторичным вакуумом теории суперструн. 

2. Продольное расслоение плоского «вакуума» на mn-вакуумы 

Вначале рассмотрим 3-мерную область «вакуума», в которой отсутствуют 

искривления. 

Воспользуемся экспериментальным фактом, что через «вакуум» распро-

страняются лучи света (электромагнитные волны или фотоны) с постоянной ско-

ростью с. 
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Если «вакуум» не изменяется, то линия, по которой прошел через него фо-

тон (или луч света) остается неизменной (рис. 2.1). 

 

Рис. 2. 1. Стационарные лазерные лучи света, визуализированные с помощью 

аэрозоли https://heatmusic.ru/product/ls-systems-beam-green/  

 

Определение №2.1. Луч света в момент времени t – это линия, по которой 

прошел фотон в «вакууме» за интервал времени от момента его испускания t0 

до t. 

Разделим весь диапазон длин электромагнитных (световых) волн  на под-

диапазоны от 10m см до 10m+1 см, где m – натуральные числа. 

Если через объем «вакуума» посылать монохроматические лучи света с дли-

ной волны mn (из диапазона Δ = 10m  10n см, где n = m + 1) с трех взаимно 

перпендикулярных направлений, то в этом объеме можно «визуализировать» 

стационарную 3-мерную световую сетку (рис. 2.1, 2.2) с длиной ребра кубиче-

ской ячейки ε mn ~ 102∙mn. 

https://heatmusic.ru/product/ls-systems-beam-green/
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Рис. 2.2. Трехмерная решетка в «вакууме», состоящая из взаимно  

перпендикулярных стационарных монохроматических лучей света с длиной 

волны mn и длиной ребром кубической ячейки ε mn ~ 102 ∙mn 

 

Данную 3-мерную сетку будем условно называть световым 3D-ландшафтом 

или mn -вакуумом. 

Определение №2.2. mn-вакуум – это 3D-ландшафт в «вакууме», который 

состоит из пересечения стационарных монохроматических лучей света с дли-

ной волны mn из диапазона Δ =10m  10n см, где n = m +1 (рис. 2.1 и 2.2). Тол-

щина лучей света по сравнению с исследуемым объемом «вакуума» стремится 

к нулю, т.е. выполняется условие применимости геометрической оптики. 

Последовательно прозондировав исследуемый объем «вакуума» монохро-

матическими лучами света с длиной волны mn из всех поддиапазонов Δ = 10 m 

 10n см, получим бесконечное количество вложенных друг в друга mn-вакуу-

мов (рис. 2.3). 
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Рис. 2.3. Дискретный набор световых 3D-ландшафтов (mn -вакуумов)  

одного и того же 3-мерного участка «вакуума»,  

где  mn >  m+1 n+1 >  m+2 n+2 >  m+3 n+3 >  m+4  n+4 …  

 

Если mn > m+1n+1, то размеры кубических ячеек 3D-ландшафтов (mn-ва-

куумов) ε mn > ε m+1n+1. 

Определение №2.3. Продольное расслоение «вакуума» – это представление 

пустой 3-мерной протяженности в виде бесконечной дискретной последова-

тельности вложенных друг в друга mn-вакуумов (световых 3D-ландшафтов). 

3. Радиолокационный метод исследования «вакуума» 

Лучи света в «вакууме» не видны, поэтому никакого mn-вакуума, образо-

ванного монохроматическими лучами света, человеческий глаз не видит. Тем не 

менее, его можно визуализировать, если, например, на путях лазерных лучей рас-

пылить частички аэрозоли (рис. 2.1). 
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Рис. 3.1. Радиолокационная установка (РЛУ) для зондирования  

участка «вакуума» 

 

 

 

Рис. 3.2. Распространение луча света по искривленному участку «вакуума» 
 

Более корректным методом исследования метрико-динамических свойств 

«вакуума» является радиолокационное зондирование, поскольку данный подход 

позволяет сравнивать физические величины в одной точке пространства. Срав-

нение величин в разных точках пространства связано со сложной процедурой 

синхронизации часов в этих точках, что неминуемо приводит к дополнительным 

ошибкам измерений. 

Радиолокационная установка (РЛУ) показана на рис. 3.1. Допустим, что она 

оснащена высокоточными часами, жесткой линейкой и отражателем, находя-

щимся за исследуемым участком «вакуума». Также допустим, что радиолокатор 

излучает короткие импульсы монохроматических электромагнитных сигналов с 

несущей длиной волны mn. 
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Пусть импульс электромагнитного сигнала, излученный антенной РЛУ, рас-

пространяется в исследуемом участке «вакуума» до отражателя, отражается от 

него в обратном направлении (рис. 3.1), и отраженный сигнал попадает в апер-

туру антенны РЛУ. 

Промежуток времени dt = t2 – t1, прошедший от момента t1 – испускания им-

пульса до момента t2 – приема отраженного сигнала, фиксируется высокоточ-

ными часами. 

Зная промежуток времени dt и полагая, что скорость света в «вакууме» с 

является фундаментальной константой, легко рассчитать длину пути, по кото-

рому распространяется луч света от антенны РЛУ до отражателя, по формуле 

.
2

1
cdtdl         (3.1) 

Пусть то же расстояние, измеренное линейкой (рис. 3.1, 3.2) окажется рав-

ным L. 

 

Рис. 3.3. Зондирование исследуемого объема «вакуума»  

с трех взаимно перпендикулярных направлений 

 

Если dl = L, то это можно интерпретировать как прямолинейное распростра-

нение радиосигнала от излучателя до отражателя и обратно. 

Если dl ≠ L, то при полностью исправном оборудовании РЛУ это может со-

ответствовать одному из следующих случаев: 
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а) исследуемый участок «вакуума» искривлен, поэтому луч света распро-

страняется по геодезической линии искривленного 3D-ландшафта (рис. 3.2); 

б) в исследуемом объеме присутствует течение (движение) «вакуума», ко-

торое сносит луч света с прямого пути; 

в) на данном участке имеются искривление и течение «вакуума». 

С помощью одной РЛУ невозможно определить характер искривлений «ва-

куума». Для более полного определения его метрико-динамических свойств, 

необходимо зондировать данный участок минимум с трех взаимно перпендику-

лярных направлений (рис. 3.3). 

4. Особенности радиолокационного метода 

В радиолокационном методе зондирования «вакуума» содержатся два фун-

даментальных аспекта, которые в дальнейшем повлияют на развитие светогео-

метрии. 

Во-первых, отметим важный факт, что промежуток времени dt, отмеряемый 

часами РЛУ (рис. 3.1), не имеет отношения к исследуемому участку «вакуума», 

поскольку данный участок «вакуума» находится между апертурой антенны и от-

ражателем, а часы находятся вне этого участка. Другими словами, в радиолока-

ционном методе время является атрибутом стороннего наблюдателя, а не иссле-

дуемого участка «вакуума». Это означает, что метрико-динамическое состояние 

локального участка «вакуума» определяется его искривлением и/или движением, 

а не изменением течения времени, как это трактуется в общей теории относи-

тельности (ОТО) А. Эйнштейна. 

Во-вторых, из радиолокационного метода следует, что окружающее нас 

пространство имеет, как минимум, две сопряженных 4-мерных стороны: «внеш-

нюю» и «внутреннюю». 

Поясним данное утверждение на примере. Основное уравнение радиолока-

ции (3.1) может быть представлено в виде 

с

dldl
dt br )( 
 ,      (4.1) 
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где dlr – расстояние, которое проходит луч света в прямом направлении (от ан-

тенны РЛУ к отражателю) (рис. 3.1); dlb – расстояние, которое проходит луч света 

в обратном направлении. 

То есть в радиолокационном методе неизбежно присутствуют два луча: пря-

мой и обратный. Им соответствуют две сопряженные протяженности: внешняя и 

внутренняя. 

За промежуток времени dt луч света проходит расстояние 

cdt = dl,       (4.2) 

где dl = (dx2 + dy2 + dz2) 
½ – элемент длины в 3-мерном «вакууме». 

Из (4.2) следует выражение 

c2dt2 = dx2 + dy2 + dz2.      (4.3) 

В свою очередь, (4.3) возможно записать двумя способами: 

ds(-)2 = c2dt2 – dx2 – dy2 – dz2 = 0,      (4.4) 

ds(+)2 = – c2dt2 + dx2 + dy2 + dz2 = 0,     (4.5) 

соответственно для прямого луча (или внешней протяженности) и для обратного 

луча (или внутренней протяженности). 

Сумма квадратов интервалов (4.4) и (4.5) равна истинному нулю 

½(ds(-)2 + ds(+)2) = ds(-)2 + ds(+)2 = (c2dt2 – dx2 – dy2 – dz2) + (- c2dt2 + dx2 + dy2 + dz2) = Ɵ,  (4.6) 

что позволяет снять одну из основных проблем квантовой теории поля – беско-

нечность энергии физического вакуума, т.к. в этом случае каждому нулевому 

уровню гармонического осциллятора соответствует нулевой уровень анти-ос-

циллятора. 

Определение №4.1 Истинный нуль определяется выражением 

Ɵ = 0 – 0.       (4.7) 

В локальной области осцилляторы и анти – осцилляторы могут быть сдви-

нуты по фазе, отличаться по амплитуде и поляризации, поэтому в каждой точке 

пространства возможны непрерывные флуктуации фотон – антифотонного ваку-

умного конденсата, но, в среднем, по объему «вакуума» они полностью анниги-

лируют. 
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5. Геодезические линии mn-вакуума 

Монохроматические лучи света с различными длинами волн mn распро-

страняются в «вакууме» с одной и той же скоростью с и по одним и тем же зако-

нам электродинамики. Поэтому, если исследуемый участок «вакуума» не ис-

кривлен, то все световые 3D-ландшафты (mn-вакуумы) будут отличаться друг 

от друга только длиной ребра кубической ячейки εmn ~ 102mn (рис. 2.2). 

Однако, если «вакуум» искривлен, то все mn-вакуумы будут отличаться 

друг от друга в силу того, что лучи света с разной длиной волны имеют разную 

толщину. Каждый световой 3D-ландшафт (mn-вакуум) будет уникальным 

(рис. 5.1), т.к. все неровности «вакуума» усредняются в приделах толщины луча 

света. 

 

Рис. 5.1. mn-вакуум вложен в fd -вакуум, где fd   mn 
 

Данное обстоятельство теоретически обосновывается в разделах геометри-

ческой оптики, связных с разрешающей способностью оптических приборов 

[16; 19], и подтверждается экспериментальными данными (рис. 5.2). 

Один mn-вакуум – это только один 3-метный срез искривленной области 

«вакуума» (рис. 5.1). Для более полного описания искривленного участка «ваку-

ума» необходимо получить множество mn-вакуумов, вложенных друг в друга. 
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Рис. 5.2. Экспериментальные данные о толщине луча лазера в зависимости 

от длины монохроматической волны  

(https://tech.onliner.by/2006/03/29/blu_ray_about) 

 

Чтобы не потерять информацию об искривленном участке «вакуума», шаг 

его дискретизации на mn-вакуумы должен удовлетворять теореме Котельни-

кова (в англоязычной литературе – теореме Найквиста-Шеннона). По сути, дан-

ная теорема является условием квантования «вакуума» на вложенные друг в 

друга световые 3D-ландшафты. 

Учитывая свойства распространения лучей света (эйконалов электромаг-

нитных волн), заключаем, что искривленный световой 3D-ландшафт (mn-ва-

куум) выявляется в «вакууме» только тогда, когда длина волны монохроматиче-

ских зондирующих лучей света mn намного меньше размеров искривлений. В 

этом случае, применимо приближение геометрической оптики mn → 0, а лучи 

света можно рассматривать как бесконечно тонкие геодезические линии свето-

вого 3D-ландшафта (mn-вакуума) (рис. 5.1). 

Поэтому, например, для высвечивания 3D-ландшафта на уровне флуктуа-

ций кварк-глюонного вакуумного конденсата с характерными искривлениями в 

масштабах 10–13  10–15 см, необходимо использовать лучи света с длиной волны 

mn > 10–17см. 

6. Шестнадцать вращающихся 4-базисов 

Вернемся к рассмотрению идеального (неискривленного) участка одного из 

mn – вакуумов (рис. 6.1). 
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Рис. 6.1. Неискривленный локальный участок светового 3D-ландшафта 

(mn-вакуума), состоящий из монохроматических лучей света с длиной волны 

mn. Ячейками такой 3-мерной световой решетки являются идеальные  

кубики с длиной ребра  mn  102·mn  

 

В неискривленной области «вакуума» световые 3D-ландшафты отличаются 

друг от друга только длиной ребра кубической ячейки  mn  102·mn, поэтому 

данный пункт относится к описанию любого из mn-вакуумов. 

Подсчитаем, сколько ортогональных 3-базисов берут начало в центральной 

точке О исследуемого объема mn-вакуума (рис. 6.1). 

Определение №6.1. Ортогональный 3-базис – это три взаимно перпендику-

лярных единичных вектора, выходящих из одной общей точки. 

Если разнести 3-базисы из точки О (рис. 6.1) в разные стороны, то выяс-

нится, что их 16 (рис. 6.2 а, б). 
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а) восемь 3-базисов б) восемь 3-антибазисов 

 

в) смежные кубические 

ячейки 

Рис. 6.2. Шестнадцать 3-базисов в центральной точке О,  

изучаемого объема «вакуума» 

 

Из них восемь 3-базисов относятся к самой кубической ячейке (рис. 6.2 а), а 

восемь противоположных им 3-антибазисов относятся к смежным кубическим 

ячейкам (рис. 6.2 б, в). 

Любое движение в «вакууме» должно сопровождаться аналогичным анти-

движением – это в рамках Алгебры сигнатур называется «вакуумным условием» 

(опр. 12.2). Поэтому, если один 3-базис (вместе с кубической ячейкой) повора-

чивается по часовой стрелке (рис. 6.2 в), то это возможно только, если смежная 

кубическая ячейка (вместе с 3-антибазисом) аналогично поворачивается против 

часовой стрелки, поскольку в «вакууме» нет никакой точки опоры. 

В связи с вышесказанным, удобно всем 3-базисам (рис. 6.2 а) добавить по 

четвертой оси времени, а восьми 3-антибазисам (рис. 6.2 б) добавить по четвер-

той противоположной анти-оси времени. 

Таким образом, в рассматриваемой точке О mn-вакуума (рис. 6.1) имеется 

8 + 8 = 16 ортогональных 4-базисов, показанных на рис. 6.3. 
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Рис. 6.3. Шестнадцать 4-базисов с началом в точке О, полученных  

посредством добавления к восьми 3-базисам и восьми 3-антибазисам  

по четвертой аксиальной оси времени 

 

Шестнадцать 4-базисов (рис. 6.3) могут быть получены в рамках радиолока-

ционного метода зондирования локального участка «вакуума». В п. 3 было пока-

зано, что для определения метрико-динамических свойств «вакуума» в окрест-

ности точки О в эту точку должны приходить радиолокационные сигналы (мо-

нохроматические лучи света) не менее чем с трех взаимно перпендикулярных 

направлений (рис. 3.3). 

Пусть в точку О приходят шесть монохроматических лучей света с круговой 

поляризацией (по два встречных луча света с трех взаимно перпендикулярных 

направлений, рис. 6.4). 

 

Рис. 6.4. Поляризации лучей и антилучей света, приходящих в точку О  

с трех взаимно перпендикулярных направлений 
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Рис. 6.5. Два 3-базиса, состоящие из векторов электрического поля 

Ex
(+),  Eу

(+),  Ez
(+)    и   Ex

(–), Eу
(–), Ez

(–) ,  

вращающиеся в точке О во взаимно противоположных направлениях 

 

 

Для примера, рассмотрим два встречных луча света, распространяющихся 

навстречу друг другу вдоль оси Х (рис. 6.4). Пусть поляризация рассматривае-

мого луча света задается вектором электрического поля Ex
(+), а поляризация ан-

тилуча – вектором электрического поля Ex
(-). Эти вектора описываются ком-

плексными выражениями [11]: 

)()()()()(
)()(~ xktii

ym
xktii

zmx
xxyxxz eeEieeEE








,     (6.1)

 

)()()()()(
)()(~ xktii

ym
xktii

zmx
xxyxxz eeEieeEE








,    (6.2) 

где Ezm
(+)  – проекция вектора Ex

(+) на ось Z; Eym
(+)  – проекция вектора Ex

(+) на ось 

Y; Ezm
(–)  – проекция вектора Ex

(-) на ось Z; Eym
(–)  – проекция вектора Ex

(–) на ось Y; 

 – циклическая частота колебаний световой волны; kх – проекция волнового 

вектора на ось Х; хz
(+),хy

(+)  – фазы ортогональных составляющих волны, распро-

страняющейся в прямом направлении оси Х; хz
(-),хy

(-)
 – фазы ортогональных со-

ставляющих волны, распространяющейся в противоположном направлении 

оси Х. 

Из шести вращающихся векторов электрического поля, показанных на рис. 

6.4, 6.5, можно составить 16 вращающихся 3-базисов. Из них: восемь 3 – базисов 

вращаются по часовой стрелке, а восемь других 3 – базисов вращаются против 

часовой стрелки, как показано на рис. 6.3. 
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Кратко поясним, как вводится четвертая ось времени в каждый 3-базис. 

Если частоты всех трех пробных монохроматических лучей, приходящих в ис-

следуемую точку О (рис. 6.4) с трех ортогональных направлений, одинаковы x = 

y = z, то их электрические вектора Ei
(±) в этой точке вращаются с одной и той 

же угловой скоростью 

d /dt =  = x.      (6.3) 

Вместе эти три вектора электрического поля Ei
(±) образуют ортогональный 

электрический 3-базис, постоянно вращающийся с угловой скоростью (6.3), от-

куда вытекает необходимость введения оси времени  / = t. 

Таким образом, радиолокационный метод зондирования «вакуума» в 

окрестности точки О приводит к тем же шестнадцати 4-базисам, показанным на 

рис. 6.3. Но в этом случае реперными векторами 4-базисов являются вектора 

электрического поля Ei
(±). 

7. Субконт и антисубконт 

Важным аспектом развиваемой здесь теории является утверждение, что объ-

ектом исследования является 3-мерный объем «вакуума» (рис. 2.2). Из этого по-

стулата следует основная формула аффинной светогеометрии (4.2) 

cdt = dl = (dx2 + dy2 + dz2) 
½ = |idx + jdy +kdz|,    (7.1) 

где i, j, k – ортогональные единичные вектора, и основная формула метрической 

светогеометрии (4.3) 

c2dt2 = dx2 + dy2 + dz2,     (7.2) 

преобразование которой приводит к системе из двух сопряженных метрик (4.4) 

и (4.5): 

ds(-)2 = c2dt2 – dx2 – dy2 – dz2 = dx0
2 – dx1

2 – dx2
2 – dx3

2 = 0 с сигнатурой (+ – – –) (7.3) 

ds(+)2 = – c2dt2 + dx2 + dy2 + dz2 = – dx0
2 + dx1

2 + dx2
2 + dx3

2 = 0 с сигнатурой (– + + +) (7.4) 

Из данной системы уравнений следует два «технических» вывода: 

1. Квадратичные формы (7.3) и (7.4) можно условно интерпретировать как 

метрики двух 4-мерных сторон одного и того же 4 + 4 = 8 = 23 – мерного метри-

ческого пространства, которое будем называть «23-mn-вакуумной протяженно-

стью». 
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Определение №7.1 2k-mn-вакуумная протяженность – это вспомогатель-

ная логическая «конструкция», означающая пространство с 2k математиче-

скими измерениями (где k = 3, 4, 5, …,), которое «высвечивается» из «вакуума» 

посредством его зондирования прямыми и обратными монохроматическими лу-

чами света с длиной волны mn. Самая простая 23-mn-вакуумная протяжен-

ность имеет две «стороны»: 

 4-мерное пространство Минковского с метрикой (7.3) и сигнатурой (+ – 

– –); 

 4-мерное антипространство Минковского с метрикой (7.4) и сигнатурой 

(– + + +). 

Алгоритмы перехода от формальных параметров протяженностей с 2k мате-

матическими измерениями к физическим величинам, характеризующим 3-мер-

ный объем «вакуума» будут рассмотрены ниже. 

Несмотря на то, что 23-mn-вакуумная протяженность является чисто ло-

гической 4 + 4 = 8 – мерной конструкцией, из нее могут быть получены физиче-

ские следствия. Поясним это на следующем 2 + 2 = 4 – мерном примере. 

У листа бумаги, толщиной которого можно пренебречь, имеется две 2-мер-

ных страницы (рис. 7.1). Поэтому лист бумаги можно рассматривать в качестве 

аналога 2 + 2 = 4-мерной протяженности. 
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Рис. 7.1. Изогнутая двухстороння поверхность листа бумаги 
 

Если лист бумаги не деформирован, то обе его стороны с точки зрения гео-

метрии практически одинаковы. Однако, если лист перегнуть, то с одной его 2-

мерной стороны все ее элементарные площадки немного расширятся, а с другой 

сопряженной 2-мерной стороны – все элементарные площадки немного со-

жмутся. 

Точно так же, в искривленном участке «вакуума», согласно «вакуумному 

условию», одновременно возникают, как локальные сжатия, так и локальные рас-

ширения, что автоматически учитывается, как минимум, «двусторонним» рас-

смотрением ее 4 + 4 = 8-мерной метрической протяженности. 

Если учитывать толщину листа бумаги, то в качестве элемента рассмотре-

ния должен быть уже элементарный кубик, находящийся между двумя сторо-

нами листа. При этом, как будет показано ниже, потребуется рассмотрение кон-

тинуальной протяженности с 4 × 16 = 8 × 8 = 64 математическими измерениями. 

При еще более тонком рассмотрении понадобится уже 16 × 16 = 256-мерная 

протяженность, и т. д. до 2k-мерного математического пространства (где k → ∞). 
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Таким образом, в светогеометрии «вакуума» имеется только 3 физических 

пространственных измерения «вакуума» и одно временное измерение, связанное 

со сторонним наблюдателем, а также 2k математических (т.е. формальных или 

технических) измерений, где k = 3, 2, …, ∞ зависит от уровня рассмотрения ис-

следуемого объема «вакуума». 

Когда задачу удается свести к двухстороннему рассмотрению 23-mn-ваку-

умной протяженности, то для наглядности предлагается ввести следующие 

условные обозначения: 

Определение №7.2 «Внешняя» сторона 23-mn-вакуумной протяженности 

(или субконт) – это 4-мерная протяженность, локальные метрико-динамиче-

ские свойства которой задаются метрикой 

ds(+ – - -)2 = gij
(-)dxidxj с сигнатурой (+ – – –),     (7.5) 

где 
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– метрический тензор «внешней» стороны 23-mn-вакуумной протяженно-

сти (или субконта). 

В случае 
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«субконт» является синонимом 4-мерного пространства Минковского с метри-

кой (7.3) и сигнатурой (+ – – –); 

Определение №7.3. «Внутренняя» сторона 23-mn-вакуумной протяженно-

сти (или антисубконт) – это 4-мерная протяженность, локальные метрико-

динамические свойства которой задаются метрикой 

ds(- + + +)2 = gij
(+)dxidxj, с сигнатурой (– + + +),   (7.8) 
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– метрический тензор «внешней» стороны 23-mn-вакуумной протяженно-

сти (или антисубконта). 

В случае 
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«антисубконт» является синонимом 4-мерного антипространства Минков-

ского с метрикой (7.4) и сигнатурой (– + + +). 

В определениях 7.2 и 7.3 для сокращения изложения введены два вспомога-

тельных понятия: 

Определение №7.4. Субконт (сокращение от субстанциональный конти-

нуум) – это умозрительная сплошная упруго-пластическая 4-мерная псевдо-

среда, локальные метрико – динамические свойства которой задаются метри-

кой (7.6). 

Определение №7.5 Антисубконт (сокращение от антисубстанциональный 

континуум) – это умозрительная сплошная упруго-пластическая 4-мерная псев-

досреда, локальные метрико-динамические свойства которой задаются метри-

кой (7.8). 

Понятия субконт» и антисубконт – это вспомогательные 4-мерные псевдо-

среды, которые являются синонимами соответственно внешней и внутренней 

сторон 23-mn-вакуумной протяженности. Эти понятия вводятся только для 

удобства восприятия ряда упруго – пластических процессов, протекающих в «ва-

кууме». 

8. Алгебра стигнатур 

Выше были рассмотрены физические основы светогеометрии «вакуума». 

Далее будут в основном затрагиваться формальные геометрические и математи-

ческие аспекты данной теории. 
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Как бы далее ни усложнялся формальный математический аппарат Алгебры 

сигнатур, следует помнить, что геодезическими линиями исследуемого свето-

вого 3D-ландшафта (или mn-вакуума) являются монохроматические беско-

нечно тонкие лучи света с длиной волны mn. При этом основным предметом 

рассмотрения является бесконечно малая 3-мерная кубическая ячейка mn-ваку-

ума в окрестности точки О (рис. 6.1, 6.2), с каждым углом которой связано по два 

вращающихся 4-базиса, показанных на рис. 6.3. 

Каждый из шестнадцати 4-базисов задает направление осей 4-мерного аф-

финного пространства с особой характеристикой, которую будем называть стиг-

натура. 

 

Рис. 8.1. База  со стигнатурой {+ + + +} 
 

Чтобы ввести характеристику стигнатура аффинного пространства, сна-

чала определим понятие база. Выберем из 16-и 4-базисов, показанных на рис. 

6.3, в качестве базы пятый 4 – базис ei
(5)(e0

(5),e1
(5),e2

(5),e3
(5)) (рис. 8.1) и условно 

примем, что направления всех его единичных базисных векторов положительны 

ei
(5)(e0

(5),e1
(5),e2

(5),e3
(5)) = (+1, +1,+ 1, +1)  {+ + + +}.   (8.1) 

Здесь введено сокращенное обозначение {+ + + +}, которое в дальнейшем 

будем называть «стигнатурой» аффинного (векторного) пространства, задавае-

мого 4-базисом e(5). 

Определение №8.1 «База» – это один из 16-и 4-базисов, показанных на рис. 

6.3, направления всех 4-х единичных векторов которого условно приняты поло-

жительными, поэтому стигнатура базы всегда {+ + + +}. 

Относительно произвольно выбранной «базы» (т. е. 4-базиса e(5)) оси всех 

остальных 4-базисов, показанных на рис. 6.3, имеют следующие знаки. 
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Таблица 8.1 

 

4-базис                                  Стигнатура 

ei
(1) (e0

(1), e1
(1), e2

(1), e3
(1)) = 

 = (1, 1, -1, 1)                        {+ + – +} 

ei
(2) (e0

(2), e1
(2), e2

(2), e3
(2)) = 

 = (1, -1, -1, -1)                      {+ – - -} 

ei
(3) (e0

(3), e1
(3), e2

(3), e3
(3)) = 

 = (1, 1, -1, -1)                       {+ + – -} 

ei
(4) (e0

(4), e1
(4), e2

(4), e3
(4)) = 

 = (1, -1, -1, 1)                       {+ – - +} 

ei
(5) (e0

(5), e1
(5), e2

(5), e3
(5)) = 

 = (1, 1, 1, 1)                          {+ + + +} 

ei
(6) (e0

(6), e1
(6), e2

(6), e3
(6)) = 

 = (1, -1, 1, -1)                        {+ – + -} 

ei
(7) (e0

(7), e1
(7), e2

(7), e3
(7)) = 

 = (1, 1, 1, -1)                         {+ + + -} 

ei
(8) (e0

(8), e1
(8), e2

(8), e3
(8)) = 

 = (1, -1, 1, 1)                         {+ – + +} 

 4-базис                                    Стигнатура 

ei
(9) (e0

(9), e1
(9), e2

(9), e3
(9)) = 

 = (-1, 1, -1, 1)                         {- + – +} 

ei
(10) (e0

(10), e1
(10), e2

(10), e3
(10)) = 

 = (-1, 1, -1, -1)                        {- – - -} 

ei
(11) (e0

(11), e1
(11), e2

(11), e3
(11)) = 

 = (-1, 1, -1, -1)                        {- + – -} 

ei
(12) (e0

(12), e1
(12), e2

(12), e3
(12)) = 

 = (-1, -1, -1, 1)                         {- – - +} 

ei
(13) (e0

(13), e1
(13), e2

(13), e3
(13)) = 

 = (-1, 1, 1, 1)                            {- + + +} 

ei
(14) (e0

(14), e1
(14), e2

(14), e3
(14)) = 

 = (-1, -1, 1, -1)                         {- – + -} 

ei
(15) (e0

(15), e1
(15), e2

(15), e3
(15)) = 

 = (-1, 1, 1 -1)                           {- + + -} 

ei
(16) (e0

(16), e1
(16), e2

(16), e3
(16)) = 

 = (-1, -1, 1, 1)                          {- – + +}  
 

Определение №8.2 «Стигнатура» 4-базиса – это совокупность знаков, со-

ответствующих направлениям базисных векторов по отношению к направле-

ниям базисных векторов «базы». 

Все стигнатуры, приведенные в табл. 8.1, объединяются в 16-компонент-

ную матрицу: 

 
       
       
       
        






























33231303

32221202

31211101

30201000

)(a
iestign .   (8.2) 

Эта матрица представляет собой отдельный математический объект, обла-

дающий уникальными свойствами. Перечислим некоторые из них: 

1. Сумма всех 16-и стигнатур (8.2) равна нулевой стигнатуре 

 {+ + – +} + {+ – – –} + {+ + – –} + {+ – – +} + 

+ {+ + + +} + {+ – + –} + {+ + + –} + {+ – + +} +                          (8.3) 

+ {– + – +} + {– – – – } + {– + – –} + {– – – +} + 

+ {– + + +} + {– – + –} + {– + + –} + {– – + +} = {0000}. 

2. Сумма всех 64 знаков, входящих в матрицу (8.2), равна нулю (32 «+» + 

32 «–» = 0). 
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3. Возможны четыре бинарные комбинации знаков: 




















































 IHVH ,     (8.4) 

или в транспонированном виде 

         IHVH .    (8.5) 

Всевозможные сочетания данных бинарных комбинаций знаков образуют 

16 вариантов стигнатур: 

}.{};{};{};{

};{};{};{};{

};{};{};{};{

};{};{};{};{





















































































































































































































HHHVHHHI

VHVVHVIV

HHVHHHIH

IHVIHIII

 

(8.6)
 

4. Кронекеров квадрат двурядной матрицы бинарных стигнатур образует 

матрицу, состоящую из 16 стигнатур (8.2): 

   
   

       
       
       
       








































2

   

 

(8.7) 

где  – символ, означающий кронекерово умножение. 

5. Если матрицам (8.6) вернуть исходные единицы, то получим двурядные 

матрицы 
























































































11

11

11

11

11

11
;

11

11

11

11

11

11

11

11

11

11

     (8.8) 

.
11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11































































 







 













     (8.9) 
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Восемь из них: 


































































 


















11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

     (8.10) 

являются матрицами Адамара, т.к. они удовлетворяют условию 











10

01
2)2()2( ТНН .      (8.11) 

При возведении в кронекеровы степени любой из матриц (8.10) вновь полу-

чаются матрицы Адамара Н(n), удовлетворяющие условию: 

nInНnН Т )()( ,      (8.12) 

где I – диагональная единичная матрица размерности n: 























1000

0.........

0...10

0...01

I .      (8.13) 

Например, 




























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
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

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




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






























































1111

1111

1111

1111

11

11
1

11

11
1

11

11
1

11

11
1

11

11

11

11

11

11
)2(

2

2H , (8.14) 






























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
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




































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














11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111
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1111

1111

1111
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11
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)2(

3

3H
 (8.15) 

и так далее по алгоритму 

Н(2)k = Н(2k) = Н(2)  Н(2)k-1 = Н(2)  Н(2k-1),  (8.16) 

5. «База», показанная на рис. 8.1, выбрана условно. В случае выбора другой 

«базы» из 4-базисов, показанных на рис. 6.3, знаки в матрице стигнатур (8.2) по-

меняются местами, но ее свойства не изменятся. С этим видом инвариантности 

связаны отдельные свойства mn – вакуума, которые будут рассмотрены позже. 
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6. Шестнадцати 4-базисам, приведенным на рис. 6.3 и в табл. 8.1, соответ-

ствуют 16 типам «цветных» кватернионов:  

z1 = x0 + ix1 + jx2 + kx3 {+ + + +} 

z2 = -x0 -ix1 – jx2+ kx3 {- – - +} 

z3 = x0 – ix1 – jx2+ kx3 {+ – - +} 

z4 = -x0 – ix1+ jx2-kx3 {- – + -} 

z5 = x0 +ix1 – jx2 -kx3 {+ + – -} 

z6 = -x0 + ix1 – jx2-kx3 {- + – -} 

z7 = x0 – ix1+ jx2 – kx3 {+ – + -} 

z8 = -x0+ix1 + jx2 + kdx3 {- + + +} 

{- – - -} z9 = -x0 – ix1 – jx2 – kx3 

{+ + + -} z10 = x0 + ix1 + jx2 – kx3 

{- + + -} z11= – x0 + ix1 + jx2 – kx3 

{+ + – +} z12= x0 + ix1 – jx2 + kx3 

{- – + +} z13= -x0 – ix1 + jx2+ kx3 

{+ – + +} z14= x0 – ix1 +jx2+ kx3 

{- + – +} z15 = -x0 + ix1- jx2+ kx3 

{+ – - -} z16 = x0 – ix1 – jx2 – kx3  

(8.17) 

 

В [4; 7] показано, что «цвета» кватернионов соответствуют «цветам» кван-

товой хромодинамики. Прямым вычислением легко убедиться, что сумма всех 

16-и типов «цветных» кватернионов (8.17) равна нулю 

,0
16

1


k

kz       (8.18) 

т. е. суперпозиция всех типов «цветных» кватернионов сбалансирована относи-

тельно нуля. 

7. Матрица стигнатур (8.2) может быть представлена в виде суммы диаго-

нальной и антисимметричной матриц. 
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  (8.19) 

8. Пусть задана матрица, составленная из четырех элементов a, b, c, d 
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Произведение матрицы (8.20) с одной из матриц Адамара (8.14) приводи к 

матрице, компонентами которой являются линейные формы с различными стиг-

натурами (8.21) 
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Определение №8.3 «И-Цзин аналогия» – это сходство Алгебры стигнатур 

(АС) с основами «И-Цзин» (китайской «Книги Перемен»): 

 в Книге Перемен два начала: -- (Ян) и – – (Инь), и в АС два знака: «+» 

(плюс) и «–» (минус); 

 в Книге Перемен 8 триграмм (рис.8.2а), и в АС восемь 3-базисов (рис. 6.2а) 

и/или восемь 3-антибазисов (рис. 6.2б); 

 в Книге Перемен всевозможные сочетания по две триграммы порож-

дают 64 гексаграммы (рис. 8.2 б,в), и в АС возможны 64 сочетания (сложения 

или умножения) каждого 3-базиса с каждым 3-антибазисом. 

  
 

а) б) в) 

Рис. 8.2. Восемь триграмм и шестьдесят четыре  

гексаграммы китайской Книги Перемен  

http://hong-gia-ushu.ru/vu-chi/traktat-vo-kyk-vu-chi-avtor-li-khong-tai 

 

9. Спектрально-стигнатурный анализ 

Укажем на возможное применение Алгебры стигнатур для расширения воз-

можностей спектрального анализа. 

Напомним об известной в квантовой физике процедуре перехода от коорди-

натного представления к импульсному. Пусть имеется некоторая функция про-

странства и времени ρ(сt,x,y,z). Данную функцию представляют в виде произве-

дения двух амплитуд: 

ρ(сt,x,y,z) = φ(сt,x,y,z) φ(сt,x,y,z).    (9.1) 
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Далее осуществляются два преобразования Фурье 






 dzyxct
p

izyxctpppp zyxct )}(exp{),,,(),,,(


 ,   (9.2) 






 dzyxct
p

izyxctpppp zyxct )}(exp{),,,(),,,(*


 ,   (9.3) 

где 

p = 2 η/ – обобщенная частота; (9.4) 

 – длина волны; k – волновой вектор; ω – циклическая частота; 

η – коэффициент пропорциональности (в квантовой механике η = ћ – постоянная 

Планка); 

dΩ = cdtdxdydz – элементарный 4-мерный объем пространства; 

ехр{i( t – k r)} = ехр{i(2 /) (сt – x – y – z)} – прямая волна;  (9.5) 

ехр{i(- t + k r)} = ехр{i (2 /) (- сt+x+y+z)} – обратная волна.  (9.6) 

Импульсное (спектральное) представление функции ρ(сt,x,y,z) получается в 

результате произведения двух амплитуд (9.2) и (9.3) 

),,,(*),,,(),,,( zyxctzyxctzyxct ppppppppppppG   .    (9.7) 

Нулевой баланс данного спектрального представления достигается усло-

вием 

(сt – x – y – z) + (- сt + x + y + z) = 0,    (9.8) 

которое можно записать в виде 

{+ – – –} 

{– + + +} 

{0 0 0 0}.                                                 (9.9) 

Теперь сформулируем основы спектрально-стигнатурного анализа. 

По аналогии с процедурой (9.1) – (9.7) представим функцию ρ(сt,x,y,z) в виде 

произведения 8-и «амплитуд»: 

ρ(сt,x,y,z)=φ1(сt,x,y,z) φ2(сt,x,y,z) φ3(сt,x,y,z)×…×φ8(сt,x,y,z) =


8

1

),,,(
k

k zyxct . (9.10) 
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Вместо мнимой единицы i, присутствующей в интегралах (9.2) и (9.3), вве-

дем в рассмотрение восемь объектов ζr (где r = 1, 2, 3, …,8), которые удовлетво-

ряют антикоммутативным соотношениям алгебры Клиффорда: 

ζm ζk + ζk ζm = 2δkm,      (9.11) 

где δkm – символ Кронекера (δkm= 0 при m  k и δkm= 1 при m = k). 

Данным требованиям удовлетворяют, например, набор 8×8-матриц типа 

 

(9.12) 

 

 

 

 

 

 

 

 

В этом случае δkm в (9.11) является единичной 88-матрицей: 
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Осуществим восемь преобразований Фурье 
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где объекты ζm (9.12) выполняют функцию клиффордовых мнимых единиц. 

Так же найдем восемь комплексно сопряженных им Фурье-образов: 
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
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По аналогии с выражением (9.7) спектрально – стигнатурное представление 

функции ρ(сt,x,y,z) получается в результате произведения восьми амплитуд 

(9.14) – (9.21) и восьми комплексно сопряженных им амплитуд (9.22) – (10.29). 


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
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),,,(*),,,(),,,(
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zyxctkzyxctkzyxct pppppppppppp  .    (9.30) 

В этом случае имеет место 16 типов «цветных» волн (спиралей) с соответ-

ствующими стигнатурами  

 ехр{ζ1 2 / ( сt + x + y + z)} 

ехр{ζ2 2 / (– сt -x – y + z)} 

ехр{ζ3 2 / ( сt – x – y + z)} 

ехр{ζ4 2 / (– сt – x + y – z)} 

ехр{ζ5 2 / ( сt + x – y – z)} 

ехр{ζ6 2 / (– сt + x – y – z)} 

ехр{ζ7 2 / ( сt – x + y – z)} 

ехр{ζ8 2 / (– сt+ x + y +z)} 

ехр{ζ1 2 / (– сt – x – y – z)} 

ехр{ζ2 2 / ( сt + x + y – z)} 

ехр{ζ32 / (– сt + x + y – z)} 

ехр{ζ4 2 / ( сt + x – y + z)} 

ехр (ζ5 2 /(– сt  – x + y + z)} 

ехр{ζ6 2 / ( сt – x + y + z)} 

ехр{ζ7 2 / (– сt + x – y + z)} 

ехр{ζ8 2 / ( сt – x – y – z)} 
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с ранжирным аналогом  
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{– + – +} 

{+ – – –} 

{0 0 0 0)+  

= 0 

= 0 

= 0 

= 0  

= 0                                                  (9.32)               
= 0 

= 0 

= 0 

= 0. 

Таким образом, спектрально-стигнатурный анализ остается сбалансирован-

ным относительно нуля. 
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В [2; 5] показано, что попытка построения теории инвариантной относи-

тельно локальных фазовых вращений (т.е. локальных калибровочных преобразо-

ваний) типа 

eiα(- сt+ x + y +z) = e ζ1 2 / (сt + x + y + z)×е ζ2 2 / (- сt -x – y + z) × е ζ3 2 / (сt – x – y + z) ×е ζ4 2 / (-сt – x + y – z) ×   

× е ζ5 2 / (сt + x – y – z) × е ζ6 2 / (- сt + x – y – z) × е ζ7 2 / (сt – x + y – z),       (9.33) 

eiα( сt – x – y -z) = e-ζ1 2 / (сt + x + y + z)×е-ζ2 2 / (- сt -x – y + z) × е-ζ3 2 / (сt – x – y + z) ×е-ζ4 2 / (-сt – x + y – z) × 

× е-ζ5 2 / (сt + x – y – z) × е-ζ6 2 / (- сt + x – y – z) × е -ζ7 2 / (сt – x + y – z) 

может привести к развитию геометризированной вакуумной хромодинамики. 

10. Алгебра сигнатур 

Перейдем от аффинных геометрий к метрическим. Для примера рассмотрим 

аффинное (векторное) пространство с 4-базисом ei
(7)(e0

(7),e1
(7),e2

(7),e3
(7)) (рис. 6.3) 

со стигнатурой {+ + + -}. 

Зададим в этом пространстве 4-вектор 

ds(7) = ei
(7)dxi

(7) = e0
(7)dx0

(7) + e1
(7)dx1

(7) + e2
(7)dx2

(7) + e3
(7)dx3

(7),  (10.1) 

где dxi
(7) – это i-я проекция 4-вектора ds(7) на ось xi

(7), направление которой опре-

деляется базисным вектором ei
(7). 

Рассмотрим другой 4-вектор.  

ds(5) = ei
(5)dxi

(5) = e0
(5)dx0

(5) + e1
(5)dx1

(5) + e2
(5)dx2

(5) + e3
(5)dx3

(5),  (10.2) 

заданный в аффинной системе отсчета x0
(5), x1

(5), x2
(5), x3

(5) с 4-базисом ei
(5) (e0

(5), 

e1
(5), e2

(5), e3
(5)) (рис. 6.3), со стигнатурой {+ + + +}. Найдем скалярное произве-

дение 4-векторов (10.1) и (10.2) 

  

а) {+ + + +}    б) {+ + + –} 

Рис. 10.1. Два 4-базиса с различными стигнатурами  
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ds(5,7) 2  = ds(5)ds(7) = ei
(5)ej

(7)dxi dxj  = 

 = e0
(5)e0

(7)dx0dx0
 + e1

(5)e0
(7)dx1dx0

 + e2
(5)e0

(7)dx2dx0
 + e3

(5)e0
(7)dx3dx0

 + 

 + e0
(5)e1

(7)dx0dx1
 + e1

(5)e1
(7)dx1dx1

 + e2
(5)e1

(7)dx2dx1
 + e3

(5)e1
(7)dx3dx1

 +  (10.3) 

 + e0
(5)e2

(7)dx0dx2
 + e1

(5)e2
(7)dx1dx2

 + e2
(5)e2

(7)dx2dx2
 + e3

(5)e2
(7)dx3dx2

 + 

+ e0
(5)e3

(7)dx0dx3
 + e1

(5)e3
(7)dx1dx3

 + e2
(5)e3

(7)dx2dx3
 + e3

(5)e3
(7)dx3dx3.

 

Для рассматриваемого случая, скалярные произведения базисных векторов 

ei
(5)ej

(7) равны: при i = j e0
(5)e 0

(7)  = 1, e1
(5)e1

(7)  = 1, e2
(5)e2

(7)  = 1, e3
(5)e3

(7) = –1, при i ≠ j 

ei
(5)ej

(7)  = 0. 

При этом выражение (10.3) приобретает вид квадратичной формы 

ds(5,7)2 = dx0dx0
  + dx1dx1

  + dx2dx2
  – dx3dx3

  = dx0
2   + dx1

2  + dx2
2   – dx3

2  (10.4) 

с сигнатурой (+ + + –). 

Определение №10.1 «Сигнатура» – упорядоченная совокупность знаков, 

стоящих перед соответствующими слагаемыми квадратичной формы (термин 

ОТО). 

Чтобы определить сигнатуру метрического пространства с метрикой (10.4), 

вместо выполнения операции скалярного произведения векторов (10.3) можно 

перемножить стигнатуры 4-базисов, показанных на рис. 10.1: 

 {+ + + +} 

{+ + + -}      (10.5) 

 (+ + + -) 

где умножение знаков производится по следующим правилам. В числителе (10.5) 

перемножаются знаки, находящиеся в одном столбце, а результат такого пере-

множения записывается в знаменателе (под чертой) того же столбца. Умножение 

знаков осуществляется по следующим арифметическим правилам: 

I 
  {+}  {+} = {+}; {–}  {+} = {–};  

      {+}  {–} = {–}; {–}  {–} = {+}, 
(10.6) 

для «вакуума» 

H 
{+}  {+} = {+}; {–}  {+} = {–}; 

{+}  {–} = {+}; {–}  {–} = {–}, 
(10.7) 
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для некоммутативного «вакуума» 

V 
{+}  {+} = {–}; {–}  {+} = {–}; 

{+}  {–} = {+}; {–}  {–} = {+}, 
(10.8) 

для некоммутативного «антивакуума» 

H´ 
{+}  {+} = {–}; {–}  {+} = {+}; 

 {+}  {–} = {+}; {–}  {–} = {–}. 
(10.9) 

для «антивакуума». 

В данной работе будет использоваться только правило умножения знаков 

(10.6) для «вакуума». Однако следует помнить, что в более последовательной 

теории должны присутствовать все четыре возможных типа «вакуумов» с прави-

лами умножения (10.6) – (10.9) и четырьмя возможными факториалами нуля: 

0! = 1, 0! = –1, 0! = i, 0! = – i такими, что 

1/4(0! + 0! + 0! + 0!) = (1–1) + i(1–1) = 0 + i0 = Ѳ – комплексный истинный ноль, (10.10) 

0! 0! 0! 0! = 0!4 = 1·(-1)·i·(-i) = – 1. 

Поскольку арифметические действия в (10.5) выполняются по столбцам 

(шеренгам), будем называть подобные выражения ранжирами (ранжир – строй, 

порядок, шеренга). 

Ранжирное деление стигнатур для «вакуума» с правилами умножения (10.6) 

определяется по арифметическим правилам действий со знаками: 

{+} : {+} = {+}; {–}: {+} = {–}; 

{+} : {–} = {–}; {–}: {–} = {+}. 
(10.11) 

 

В этом случае в знаменателе стигнатурного ранжира будем ставить значок 

деления, например, запись 

{– + – +} 

{+ + + –} 

(– + – –): 

(10.12) 

означает ранжирное деление по правилам (10.11). 

Определение №10.2 «Ранжир» – это выражение, определяющее арифмети-

ческое действие со стигнатурами аффинных (линейных) форм или со сигнату-
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рами квадратичных форм. Знак после скобки в знаменателе ранжира (…)+ – по-

казывает какая операция производится со знаками в столбцах и/или строках 

ранжиров: (…)+ – сложение, (…)- – вычитание, (…): – деление, (…)× – умножение. 

Набор стигнатур (8.2): 

    (10.13) 

образует две отдельные абелевы группы: по операции ранжирного умножения; и 

по операции ранжирного деления. Это свидетельствует о наличии глубинных 

симметрий в основаниях развиваемой здесь светогеометрии. 

Если, подобно тому, как это было проделано с векторами ds(5) и ds(7) (10.3), 

попарно скалярно перемножить между собой вектора из всех 16-и аффинных 

пространств с 4-базисами, показанными на рис. 6.3, то получим 1616 = 256-и 

метрических 4-подпространств с метриками 

ds(аb)2 = ei
(а)ej

(b) dxi(а)dxj(b),     (10.14) 

где a = 1,2,3,…,16; b = 1,2,3,…,16. 

Сигнатуры этих 16  16 = 256 метрических 4-подпространств могут быть 

определены, подобно (10.8), ранжирными умножениями соответствующих стиг-

натур 4-базисов:  

{+ – + +}  

{+ + + –} 

(+ – + –) 

{+ + + +} 

{+ – + –} 

(+ – + –) 

{– + + +} 

{+ + + –} 

(– + + –) 

{+ + + +} 

{– + + –} 

(– + + –) 

 

 

{+ – – +} 

{+ + + –} 

(+ – – –) 

 

{+ + – +} 

{– + + –} 

(– + – –) 

 

{– + + +} 

{– + + –} 

(+ + + –) 

 

{+ – + –} 

{+ – + –} 

(+ + + +) 

 

 

{+ – – –} 

{+ + + –} 

(+ – – +) 

 

{+ + – +} 

{– + – –} 

(– + + –) 

 

{– + – +} 

{– – + –} 

(+ – – –) 

 

{+ – + +}    
{+ – + –} 

(+ + + –) 

(10.15) 

… … … 

 

… 

 

 

{+ + + –} 

{– – + –} 

(– – + +) 

{– + – –} 

{+ – + –} 

(– – – +) 

{- + + -} 

{+ – + -} 

(– – + –) 

{+ – – +} 

{– + + –} 

(– – – –) 

 

 

       

       
       

       






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Точка О (рис. 6.1) одновременно принадлежит всем этим 256-и метрическим 

4 – подпространствам с сигнатурами (10.15), точнее она является местом их пе-

ресечения. В дальнейшем будет показано, что эти метрические 4-подпростран-

ства имеют различные топологии. 

Подход Алгебры сигнатур (АС) во многом совпадает с локально-реперным 

(тетрадным) формализмом, который развивали Э. Картан, Р. Вайценбек, Т. Леви-

Чивита, Г. Шипов [15], и часто использовал А. Эйнштейн в рамках дифференци-

альной геометрии с абсолютным параллелизмом [16; 18]. 

Отличие АС от тетрадного метода в ОТО заключается в следующем. В ОТО 

в каждой точке 4-мерного многообразия (т.е. пространства-времени) задается 

два 4-репера (т.е. две тетрады), которые определяют одну метрику ds(аb)2 = 

ei
(а)ej

(b)dxi(а)dxj(b) с сигнатурой (+ – – –) [или с сигнатурой (– + + +)]; а в АС в каж-

дой точке 3-мерного многообразия («вакуума») задается шестнадцать 4 – базисов 

(или 4-реперов, или тетрад) (рис. 6.3), скалярные произведения которых обра-

зуют 256 метрик (10.14) с сигнатурами (10.15). 

11. Первый этап компактификации дополнительных измерений 

Одной из основных проблем любой многомерной теории является опреде-

ление возможности компактификации (т. е. сворачивания) дополнительных ма-

тематических измерений до наблюдаемых трех пространственных и одного вре-

менного измерения. Аналогичная задача стоит перед Алгеброй сигнатур. 

Обратим внимание, что 16 типов скалярных произведений 4-базисов, пока-

занных, например, на рис. 11.1, приводят к получению шестнадцати квадратич-

ных форм (метрик) вида (10.14) с одинаковой сигнатурой (– + – +). 



Центр научного сотрудничества «Интерактив плюс» 
 

36     https://interactive-plus.ru 

Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0) 

 

Рис. 11.1. Шестнадцать скалярных произведений 4-базисов, приводящих  

к метрикам с одинаковой сигнатурой (– + – +) 
 

После усреднения метрик с одинаковыми сигнатурами из 256 подпро-

странств выделяются только 256 / 16 = 16 типов метрических 4-пространств с 

метриками:  

ds(+ + + +)2 =dx0
2 + dx1

2 + dx2
2 + dx3

2= 0 

ds(– – – +)2 = – dx0
2 – dx1

2 – dx2
2 + dx3

2 = 0 

ds(+ – – +)2  = dx0
2 – dx1

2 – dx2
2 + dx3

2  = 0 

ds(+ – – –)2 = dx0
2 – dx1

2 – dx2
2 – dx3

2  = 0 

ds(– – + –)2 = – dx0
2 – dx1

2 + dx2
2 – dx3

2 = 0 

ds(– + – –)2 = – dx0
2 + dx1

2 – dx2
2 – dx3

2 = 0 

ds(+ – + –)2 = dx0
2 – dx1

2 + dx2
2 – dx3

2 = 0 

ds(+ + – –)2 = dx0
2 + dx1

2 – dx2
2 – dx3

2  = 0 

ds(– – – – )2 = – dx0
2 – dx1

2 – dx2
2 – dx3

2 = 0 

ds(+ + + –)2 = dx0
2 + dx1

2 + dx2
2 – dx3

2 = 0 

ds (– + + –)2 = – dx0
2 + dx1

2 + dx2
2 – dx3

2 = 0 

ds(– + + +)2 = – dx0
2 +d x1

2 + dx2
2 + dx3

2 = 0 

ds(+ + – +)2 = dx0
2 + dx1

2 – dx2
2 + dx3

2 = 0 

ds(+ – + +)2 = dx0
2 – dx1

2 + dx2
2 + dx3

2 = 0 

ds(– + – +)2 = – dx0
2 + dx1

2 – dx2
2 + dx3

2 = 0 

ds(– – + +)2 = – dx0
2 – dx1

2 + dx2
2 + dx3

2 = 0 

(11.1) 

 

с соответствующими сигнатурами 

)()()()(

)()()()(

)()()()(

)()()()(









.

 

В результате такого усреднения остается всего 4  16 = 64 математических 

измерений. 
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По классификации Феликса Клейна [10] метрические пространства с метри-

ками (11.1) могут быть разделены на три топологических класса: 

1-й класс: 4-пространства, сигнатуры которых состоят из четырех одинако-

вых знаков [10]: 

x0
2 + x1

2 +x2
2 +x3

2 = 0 (+ + + +)    (11.2) 

           – x0
2 – x1

2 – x2
2 – x3

2 = 0 (- – - -) 

– это так называемые нулевые метрические 4-пространства. У этих про-

странств имеется только одна действительная точка, находящаяся в вершине све-

тового конуса. Все остальные точки этих протяженностей являются мнимыми. 

По сути, первое из выражений (11.2) описывает не протяженность, а единствен-

ную точку, а второе – антиточку. 

2-й класс: 4-пространства, сигнатуры которых состоят из двух положитель-

ных и двух отрицательных знаков [10]: 

  x0
2 – x1

2 – x2
2 + x3

2 = 0 (+ – – +) 

  x0
2 + x1

2 – x2
2 – x3

2 = 0 (+ + – –) 

  x0
2 – x1

2 + x2
2 – x3

2 = 0 (+ – + –) 

– x0
2 + x1

2 + x2
2 – x3

2 = 0 (– + + –) 

– x0
2 – x1

2 + x2
2 + x3

2 = 0 (– – + +) 

– x0
2 + x1

2 – x2
2 + x3

2 = 0 (– + – +) 

(11.3) 

– это различные варианты 3-мерных торов. 

3-й класс: 4-пространства, сигнатуры которых состоят из трех одинаковых 

знаков и одного противоположного [10]: 

– x0
2 -x1

2 – x2
2 + x3

2 = 0 (– – – +) 

– x0
2 – x1

2 + x2
2 – x3

2 = 0 (– – + –) 

– x0
2 + x1

2 – x2
2 – x3

2 = 0 (– + – –) 

x0
2 – x1

2 – x2
2 – x3

2 = 0 (+ – – –) 

x0
2 + x1

2 + x2
2 – x3

2 = 0 (+ + + –) 

x0
2 + x1

2 – x2
2 + x3

2 = 0 (+ + – +) 

x0
2 – x1

2 + x2
2 + x3

2 = 0 (+ – + +) 

– x0
2 + x1

2 + x2
2 + x3

2 = 0 (– + + +) 

(11.4) 
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– это овальные 4-поверхности: эллипсоиды, эллиптические параболоиды, 

двуполостные гиперболоиды. 

 

Рис. 11.2. Иллюстрация связи сигнатуры 2-мерного пространства  

с его топологией [10] 

 

Упрощенная иллюстрация связи сигнатуры 2-мерного пространства с его 

топологией показана на рис. 11.2. Из этого рисунка видно, что сигнатура квадра-

тичной формы однозначно связана с топологией, описываемой ею 2-мерной про-

тяженности. 

Шестнадцать типов сигнатур (11.2) – (11.4), соответствующих 16 типам то-

пологий метрических пространств, образуют матрицу 
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abdssign ,   (11.5) 

свойства которой совпадают со свойствами матрицы стигнатур (8.2). 

Определение №11.1 «Шахматная аналогия» – это сходство Алгебры сигна-

тур (АС) с миром шахмат: 

 у шахматной доски 8  8 = 64 клетки: из них 32 черные и 32 белые. Так 

же в матрице сигнатур, (11.5) 64 знака, из них 32 плюса «+» и 32 минуса «–»; 

 вначале партии на шахматной доске присутствует 32 шахматные фи-

гуры: 16 белых и 16 черных. Так же в рамках Алгебры сигнатур в каждой точке 
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mn-вакуума имеется шестнадцать 4-базисов, которые состоят из вращаю-

щихся векторов электрического поля (рис. 6.6), т.е. «фигур света» и шестна-

дцать 4-базисов, связанных с углами кубической ячейки 3D-ландшафта 

(рис. 6.2), т.е. «фигур тьмы»; 

 сигнатуры (топологии) 16-и типов метрических пространств (11.2) – 

(11.4) схожи с характеристиками шахматных фигур (рис. 11.3): 

 двум нулевым топологиям (11.2) соответствуют «король» и «ферзь»; 

 шести тороидальным топологиям (11.3) соответствуют три пары шах-

матных фигур: 2 «офицера», 2 «коня» и 2-е «ладьи»; 

 восьми овальным топологиям (11.4) соответствуют восемь «пешек». 

 

Рис. 11.3. Сопоставление сигнатур (топологий) метрических  

пространств с шахматными фигурами 

 

Следует отметить, что по операции сложения (или вычитания) знаков по 

правилам:  

{+} + {+} = {+}; {-} + {+} = {0}; 

{+} + {-} = {0}; {-} + {-} = {-}, 

{+} – {+} = {0}; {-} – {+} = {0}; 

{+} – {-} = {+}; {-} – {-} = {0}, 

сигнатуры (11.5) являются элементами более широкой группы, состоящей из 

16+64+1=81-й сигнатуры:  

из них: 16 сигнатур без нулей, 64 сигнатуры с нулями и одна нулевая сигнатура 
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Сигнатура неявно входит в операции, выполняемые с помощь полностью 

антисимметричного единичного тензора (символа Леви-Чивиты) 𝜀123…𝑛  в n-

мерном пространстве, который определен как 

𝜀123…𝑛 = {

+1 если четная перестановка 1,2,3, … , 𝑛
 −1 если нечетная перестановка 1,2,3, … , 𝑛
0 в остальных случаях, когда два и более 

индексов совпадает.

    (11.7) 

Для тензора 𝜀123…𝑛  справедливо следующее тождество, с косвенным уча-

стием сигнатуры, 

𝜀123…𝑛𝜀123…𝑛 = (−1)𝑆

|

|

𝛿1
1 𝛿1

2 ⋯ 𝛿1
𝑛
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1 𝛿2

2 ⋯ 𝛿2
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1

⋮
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1

𝛿3
2

⋮
𝛿𝑛

2

⋯
⋱
⋯

𝛿3
𝑛

⋮
𝛿𝑛

𝑛

|

|
,    (11.8) 

где S – количество знаков минус в сигнатуре метрики рассматриваемого про-

странства. 

Определение №11.2 Алгебра сигнатур (АС) – это аксиоматическая си-

стема арифметических и алгебраических действий в рамках полного набора 

стигнатур аффинных пространств и сигнатур метрических пространств. В 

Алгебре стигнатур определена основная операция умножение (деление) стигна-

тур, а в Алгебре сигнатур определена основная операция сложение (вычитание) 

сигнатур. 

12. Второй этап компактификации дополнительных измерений. 

«Вакуумный баланс» и «вакуумное условие» 

На втором этапе компактификации дополнительных измерений определим 

аддитивную суперпозицию 16 метрик (11.1) 

ds2 = ds(+– – –)2 + ds(+ + + +)2 + ds(– – – +)2 + ds(+ – – +)2 + 

+ ds(– – + –)2 + ds(+ + – –)2 + ds(– + – –)2 + ds(+ – + –)2 + 

+ ds(– + + +)2 + ds(– – – – )2 + ds(+ + + –)2 + ds (– + + –)2 + 

+ ds(+ + – +)2 + ds(– – + +)2 + ds(+ – + +)2 + ds(– + – +)2 = 0.   (12.1) 

Действительно, складывая метрики (11.1), получим 
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ds2 = (dx0dx0
 – dx1dx1

 – dx2dx2
 – dx3dx3) + (dx0dx0

 + dx1dx1
 + dx2dx2

 + dx3dx3) + 

      + (– dx0dx0
 – dx1dx1

 + dx2dx2
 – dx3dx3) + (dx0dx0

 – dx1dx1
 – dx2dx2

 + dx3dx3) + 

       + (– dx0dx0
 – dx1dx1

 + dx2dx2
 – dx3dx3) + (dx0dx0

 + dx1dx1
 – dx2dx2

 – dx3dx3) + 

       + (– dx0dx0
 + dx1dx1

 – dx2dx2
 – dx3dx3) + (dx0dx0

 – dx1dx1
 + dx2dx2

 – dx3dx3
 ) +   (12.2) 

+ (– dx0dx0
 + dx1dx1

 + dx2dx2
 + dx3dx3) + (– dx0dx0

 -dx1dx1- dx2dx2
 -dx3dx3) + 

          + (dx0dx0
 + dx1dx1

 + dx2dx2
 – dx3dx3) + (– dx0dx0

 +dx1dx1
 +dx2dx2

 – dx3dx3) + 

+ (dx0dx0
 + dx1dx1

 – dx2dx2
 + dx3dx3) + (– dx0dx0

 – dx1dx1+ dx2dx2
 +dx3dx3) + 

     + (dx0dx0
 – dx1dx1

 + dx2dx2
 + dx3dx3) + (– dx0dx0

 + dx1dx1
 – dx2dx2

 + dx3dx3) = 0. 

Вместо суммирования однородных слагаемых в выражении (12.2) можно 

суммировать только знаки, стоящие перед этими слагаемыми. Поэтому для со-

кращения записей выражение (12.2) можно представить в эквивалентном ран-

жирном виде: 
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(+ – - -) 

(0 0 0 0) + 

= 0 

= 0 

= 0 

= 0 

= 0                                      (12.3) 
= 0 

= 0 

= 0 

= 0 

= 0. 

Сумма знаков, как по столбцам ранжиров (12.3), так и по их строкам между 

ранжирами, равна нулю. 

Ранжирное тождество (12.3) будем называть поперечно «расщепленным ну-

лем», положенным в основание геометрофизики mn-вакуума. 

В каждой точке «вакуума» имеется бесконечное количество поперечно 

«расщепленных нулей», соответствующих каждому mn-вакууму (рис. 12.1). 
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Рис. 12.1. В каждой точке О «вакуума» имеет место бесконечное  

количество поперечно «расщепленных нулей» каждого mn-вакуума  

(т.е. продольного 3-мерного слоя) 

 

Определение №12.1 Поперечно «расщепленный ноль» – определен в каждой 

точке mn-вакуума ранжирным выражением (12.3). 

Определение №12.2 Продольно «расщепленный ноль» – определен в каждой 

точке «вакуума» как полная совокупность поперечно «расщепленных нулей» всех 

mn-вакуумов. 

Сложение (усреднение) шестнадцати метрических пространств с различ-

ными сигнатурами (топологиями) (12.1) приводит к Риччи-плоскому простран-

ству, во многом схожему с 10-мерным многообразием Калаби-Яу (рис. 12.2), ко-

торое используется в теории суперструн. 

 

Рис. 12.2. Одна из реализаций двухмерной проекции трехмерной визуализации 

локального участка 10-мерного многообразия Калаби-Яу [8] 

 



Scientific Cooperation Center "Interactive plus" 
 

43 

Content is licensed under the Creative Commons Attribution 4.0 license (CC-BY 4.0) 

Второй этап компактификации дополнительных (математических) измере-

ний привел к полному их сокращению. Вместе с тем ранжирное выражение (12.3) 

является математической формулировкой «вакуумного баланса». 

Определение №12.3 «mn-вакуумный баланс» (или «вакуумный баланс») – 

это утверждение, что каждая точка mn-вакуума («вакуума») сбалансирована 

относительно «расщепленного нуля» вида (12.3). То есть в каждой точке mn-

вакуума («вакуума») изначально задан продольно и поперечно «расщепленный 

ноль», любые отклонения от которого связаны с возникновением взаимно про-

тивоположных проявлений. 

Одной из основных аксиом Алгебры сигнатур является утверждение, что 

никакие действия с mn-вакуумом не могут привести к глобальному устойчи-

вому нарушению «mn – вакуумного баланса» (12.3). Поэтому «mn-вакуумный 

баланс» лежит в основе «mn-вакуумного условия». 

Определение №12.4 «mn-вакуумное условие» (или «вакуумное условие») – 

любые проявления в mn-вакууме («вакууме») должны носить взаимно противо-

положный характер: волна – антиволна, выпуклость – вогнутость, движение – 

антидвижение, сжатие – растяжение и т. д.». Локальные mn-вакуумные («ва-

куумные») сущности и антисущности могут быть сдвинуты и повернуты от-

носительно друг друга, но, в среднем, по всей mn – вакуумной области они пол-

ностью компенсируют проявления друг друга, восстанавливая «mn – вакуумный 

баланс» («вакуумный баланс»). 

На основании вакуумного условия можно дать следующее определение «ва-

кууму». 

Определение №12.5 «Вакуум» – это полный инвариант для любых видов 

пространственных и пространственно-временных преобразований. То есть, ка-

кие бы взаимно – противоположные изменения не происходили, в среднем, «ва-

куум» всегда остается неизменным. 
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Ранжирное выражение (12.3) позволяет проделывать в окрестности сбалан-

сированной точки О некоторые операции без нарушения вакуумного баланса. К 

таким операциям относится, например, симметричный перенос первых столбцов 

с инвертированием знаков:  

0 = 
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+ = 
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– = 

+ = 

0 =  

 (0 0 0) 
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= – 

= 0 

(12.4) 

 

 

или перенос любой из строк из числителей ранжиров (12.3) в их знаменатель так 

же с инвертированием знаков, например: 
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(12.5) 

 

13. Двусторонняя mn-вакуумная протяженность 

Вакуумный баланс не нарушается, если в ранжирах (12.3) перевести одну 

строчку из числителя в знаменатель с изменением знаков на противоположные 

по правилам арифметики. Например, перенесем нижние сигнатуры (– + + +) и 

(+ – – –) из числителей ранжиров (12.3) в их знаменатели  

 (+ + + +) 
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(13.1) 
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В этом случае в знаменателе левого ранжира (13.1) получилась сигнатура 

пространства Минковского (+ – – –) с метрикой (7.3) 

ds(+ – - -)2 = c2dt2 – dx2 – dy2 – dz2 = dx0
2 – dx1

2 – dx2
2 – dx3

2 = 0,  (13.2) 

а в знаменателе правого ранжира (13.1) – инвертированная сигнатура антипро-

странства Минковского (– + + +) с метрикой (7.4) 

ds(– + + +)2 = – c2dt2 + dx2 + dy2 + dz2 = – dx0
2 + dx1

2 + dx2
2 + dx3

2 = 0.  (13.3) 

Таким образом, посредством сложения (или арифметического усреднения) 

семи метрик с сигнатурами в числителе левого ранжира (13.1) можно, согласно 

определению №7.2, выделить «внешнюю» сторону 23-mn-вакуумной протяжен-

ности с сигнатурой (+ – – –) или «субконт»; а посредством сложения (или ариф-

метического усреднения) семи метрик с сигнатурами в числителе правого ран-

жира (13.1) можно выделить «внутреннюю» сторону 23-mn-вакуумной протя-

женности с сигнатурой (– + + +) или «антисубконт». 

При этом удается понизить число рассматриваемых измерений до 4+4=8 и 

сохранить вакуумный баланс 

ds(+ – – –)2 + ds(– + + +)2 = 0 или (+ – – –) + (– + + +) = (0 0 0 0).  (13.4) 

Как было показано в п. 7, данный результат можно интерпретировать как 

наличие у 23-mn -вакуумной протяженности двух взаимно-противоположных 4-

мерных сторон: 

– «внешней стороны» с метрикой ds(+ – – –)2 с условным названием «субконт» 

(опр. №7.4); 

– «внутренней стороны» с сопряженной метрикой ds(– + + +)2 с условным 

названием «антисубконт» (опр. №7.5). 

В любой светогеометрической задаче следует иметь в виду, что mn-ваку-

умная протяженность является результатом аддитивного наложения (усредне-

ния) минимум шестнадцати 4-мерных протяженностей с метриками (11.1) и сиг-

натурами (топологиями) (11.5). То есть минимум математических измерений 

должен быть 4 × 16 = 64. Однако в ряде задач модель «вакуума» может быть све-

дена к двухстороннему рассмотрению с 4 + 4 = 8 – мерной mn-вакуумной про-

тяженностью. 
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Переход от 64 (или 8) математических измерений к трем физическим изме-

рениям «вакуума» и одному временному измерению «стороннего наблюдателя» 

будет рассмотрен ниже. 

Одностороннее рассмотрение 4-мерной mn-вакуумной протяженности в 

Алгебре сигнатур (АС) запрещено «вакуумным условием». Это значительно от-

личает АС от ОТО А. Эйнштейна. 

Итак, выяснилось, что пространство Минковского с сигнатурой (+ – – –) мо-

жет быть представлено в виде суммы (т.е. аддитивного наложения или усредне-

ния) 7-и метрических протяженностей с сигнатурами из числителя левого ран-

жира (13.1) 

ds (+ – – –)2 = ds(+ + + +)2 + ds(– – – +)2 + ds(+ – – +)2 + ds(– – + –)2 +   (13.5) 

+ ds(+ + – –)2 + ds (– + – –)2 + ds(+ – + –)2, 

а антипространство Минковского с сигнатурой (– + + +) может быть представ-

лено в виде суммы (или усреднения) 7-и метрических протяженностей с сигна-

турами из числителя правого ранжира (13.1) 

ds(– + + +)2 = ds(– – – – )2 + ds(+ + + –)2 + ds(– + + –)2 + ds(+ + – +)2 +   (13.6) 

+ ds(– – + +)2 + ds(+ – + +)2 + ds(– + – +)2. 

В развернутом виде суммарные метрики (13.5) и (13.6) имеют вид соответ-

ствующий ранжирам (13.1) 

ds(+ + + +)2 = dx0
2 + dx1

2 + dx2
2 + dx3

2 

ds(- – - +)2 = – dx0
2 – dx1

2 – dx2
2 + dx3

2 

ds(+ – - +)2 = dx0
2 – dx1

2 – dx2
2 + dx3

2 

ds(- – + -)2 = – dx0
2 – dx1

2 + dx2
2 – dx3

2 

ds(- + – -)2 = – dx0
2 + dx1

2 – dx2
2 – dx3

2 

ds(+ – + -)2 = dx0
2 – dx1

2 + dx2
2 – dx3

2 

ds(+ + – -)2 = dx0
2 + dx1

2 – dx2
2 – dx3

2 

ds(+- – -)2 = dx0
2 – dx1

2 – dx2
2 – dx3

2 

ds(- – - – )2 = – dx0
2 – dx1

2 – dx2
2 – dx3

2 

ds(+ + + -)2 = dx0
2 + dx1

2 + dx2
2 – dx3

2 

ds (- + + -)2 = – dx0
2 + dx1

2 + dx2
2 – dx3

2 

ds(+ + – +)2 = dx0
2 + dx1

2 – dx2
2 + dx3

2 

ds(+ – + +)2 = dx0
2 – dx1

2+ dx2
2 + dx3

2 

ds(- + – +)2 = – dx0
2 + dx1

2 – dx2
2 + dx3

2 

ds(- – + +)2 = – dx0
2 – dx1

2 + dx2
2 + dx3

2 

ds(- + + +)2 = – dx0
2 +d x1

2 + dx2
2 + dx3

2  

(13.7) 

 

14. Спинтензорное представление метрик 

Вернемся к рассмотрению метрики (7.3). Для краткости опустим в этой мет-

рике знаки дифференциалов 

s2 = x0
2 – x1

2 – x2
2 – x3

2.     (14.1) 

Как известно, квадратичная форма (14.1) является детерминантом эрмито-

вой 22 – матрицы 
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(14.2)

 

В теории спиноров матрицы вида (14.2) называют смешанными эрмито-

выми спинтензорами второго ранга [9, 14]. 

Представим 22-матрицу (спинтензор) (14.2) в развернутом виде 
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– набор матриц Паули. 

В теории спиноров А4-матрице (14.3) ставится в однозначное соответствие 

кватернион 

3322110 xexexexq


 ,     (14.4) 
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Аналогично, каждая квадратичная форма: 

s(+ + + +)2 = x0
2 + x1

2 + x2
2 + x3

2 

s(- – - +)2 = – x0
2 – x1

2 – x2
2 + x3

2 

s(+ – - +)2 = x0
2 – x1

2 – x2
2 + x3

2 

s(+- – -)2 = x0
2 – x1

2 – x2
2 – x3

2 

s(- – + -)2 = – x0
2 – x1

2 + x2
2 – x3

2 

s(- + – -)2 = – x0
2 + x1

2 – x2
2 – x3

2 

s(+ – + -)2 = x0
2 – x1

2 + x2
2 – x3

2 

s(+ + – -)2 = x0
2 + x1

2 – x2
2 – x3

2  

s(- – - – )2 = – x0
2 – x1

2 – x2
2 – x3

2 

s(+ + + -)2 = x0
2 + x1

2 + x2
2 – x3

2 

s(- + + -)2 = – x0
2 + x1

2 + x2
2 – x3

2 

s(- + + +)2 = – x0
2 + x1

2 + x2
2 + x3

2 

s(+ + – +)2 = x0
2 + x1

2 – x2
2 + x3

2 

s(+ – + +)2 = x0
2 – x1

2+ x2
2 + x3

2 

s(- + – +)2 = – x0
2 + x1

2 – x2
2 + x3

2 

s(- – + +)2 = – x0
2 – x1

2 + x2
2 + x3

2 

(14.6) 

 

может быть представлена в виде спинтензора или А4-матрицы: 

Таблица 14.1 
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Каждой А4-матрице из табл. 14.1 ставится в соответствие «цветной» кватер-

нион типа (8.17), где в качестве мнимых единиц используются объекты 
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 (14.7) 

– спиновые матрицы Паули – Кэли, которые являются образующими алгебры 
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В табл. 14.1 приведены только частные случаи спинтензорных представле-

ний квадратичных форм. Например, детерминанты всех тридцати пяти 22-мат-

риц (эрмитовых спинтензоров):  

 

(14.9) 
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Точно так же разветвляются (вырождаются) спинтензорные представления 

всех 16-и квадратичных форм, приведенных в табл. 14.1. В следующих статьях 

Алгебры сигнатур будет показано, что любая дискретная вырожденность 

(т. е. скрытая многозначность) исходного идеального состояния mn-вакуума 

при отклонении от идеальности приводит к расщеплению (квантованию) на дис-

кретное множество неодинаковых состояний ее поперечных и продольных 

слоев. 

Шестнадцать типов А4-матриц эквивалентны 16-и «цветным» кватернионам 

(8.17). Для наглядности все сорта «цветных» А4-матриц сведены в табл. 14.2. 

Таблица 14.2 
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Алгебра сигнатур связывает сбалансированную относительно нуля супер-

позицию аффинных протяженностей с 16-ю возможными стигнатурами: 

ds = (- dx0 – dx1 – dx2 – dx3) + ( dx0 + dx1+ dx2 + dx3) + 

+ ( dx0 + dx1+ dx2 – dx3) + (- dx0 – dx1 – dx2 + dx3) + 

+ (- dx0 + dx1+ dx2 – dx3) + ( dx0 – dx1 – dx2 + dx3) + 

+ ( dx0 + dx1 – dx2 + dx3) + (- dx0 – dx1+ dx2 – dx3) +      (14.10) 

+ (- dx0 – dx1+ dx2 + dx3) + ( dx0 + dx1 – dx2 – dx3) + 

+ ( dx0 – dx1 + dx2 + dx3) + (- dx0 + dx1 – dx2 – dx3) + 

+ ( – dx0+ dx1 – dx2+ dx3) + ( dx0 – dx1 + dx2 – dx3) + 

+ ( dx0 – dx1 – dx2 – dx3) + (- dx0 + dx1+ dx2 + dx3) = 0, 

с одним из вариантов суперпозиции 16-и А4-матриц: 
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Выражение (14.11) равно нулевой 22-матрице, т.е. отвечает требованию 

соблюдения «вакуумного баланса». 

Приведенный здесь спинтензорный математический аппарат удобен для ре-

шения ряда задач, связанных с многослойными внутривакуумными вращатель-

ными процессами. 

Рассмотрим два примера с использованием спинтензоров. 

Пример №14.1 Пусть заданы матрица-столбец и эрмитово сопряженная 

ей матрица – строка 
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которые описывают состояние спинора. 

Проекции спина на оси координат для случая, когда метрическое простран-

ство имеет сигнатуру (+ – – –) могут быть определены с помощью спинтензора 

(14.3) 

 

       

        ,

10

01
,

0

0
,

01

10
,

10

01
,

,

32211221121121202211

2

1
213

2

1
212

2

1
211

2

1
210

2

1

3021

2130
21

xssssxsissisxssssxssss

s

s
ssx

s

s

i

i
ssx

s

s
ssx

s

s
ssx

s

s

xxixx

ixxxx
ss









































 





























































 (14.13) 

Пример №14.2 Пусть прямая волна описывается выражением 
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а обратная ей волна 
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где a+ и a- – амплитуды прямой и обратной волны. В общем случае это комплекс-

ные числа: 
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содержащие информацию о фазах волн φ+ и φ-. 

Взаимно противоположные волны (14.14) и (14.15) можно представить в 

виде двухкомпонентного спинора: 
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и эрмитово сопряженного ему спинора 
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Условие нормировки в данном случае выражается равенством 
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Для нахождения проекций спина (круговой поляризации) луча света на оси 

координат воспользуемся спинтензором 
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который связан с 3-мерным элементом длины 
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Полагая в выражении (14.20) x1 = x2 = x3 = 1, рассмотрим проекции спина на 

оси координат 
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Подставляя в это выражение спиноры (14.17) и (14.18), получим три сле-

дующие проекции спина на соответствующие координатные оси x1 = x, x2 = y, x3 = 

z: 
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  (14.25) 

В случае a+ = a- и φ+= φ-= 0 получим следующие усредненные проекции спина 

(вращающегося вектора напряженности электрического поля) на оси коорди-

нат XYZ 

0zs , 

  krtasx   2cos2 2 ,                                        (14.26) 

  krtas y   2sin2 2 . 

Таким образом, спинорное представление распространения сопряженной 

пары волн приводит к описанию их круговой поляризации без привлечения допол-

нительных гипотез. 
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15. Дираковское «расслоение» квадратичной формы 

Рассмотрим дираковское «расслоение» квадратичной формы на примере 

метрики 

222222 dzdydxdtcds  = dx0
2 + dx1

2 + dx2
2 + dx3

2 с сигнатурой (+ + + +). (15.1) 

Представим данную метрику в виде произведения двух аффинных (линей-

ных) форм 

   '''''' ''''' ' 3322110033221100

2 dxdxdxdxdxdxdxdxsdsdds   . (15.2) 

Раскрывая в данном выражении скобки, получим 
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Существует, по крайней мере, два варианта определения величин , удовле-

творяющих условию равенства выражений (15.1) и (15.3): 

1) метод клиффордовых агрегатов (например, кватернионов); 

2) метод Дирака. 

В первом случае линейные формы, входящие в выражение (15.2), представ-

ляются в виде пары аффинных агрегатов с условными названиями: 

zdydxdtcdsd  3210    – «личина» метрической протяженности (15.4) 

со стигнатурой {+ + + +} (опр. 24.1); 

zdydxdtcdsd  3210   – «изнанка» метрической протяженности (15.5) 

с сигнатурой {+ + + +} (опр. 24.2), 

где  – объекты, удовлетворяющие антикоммутативному отношению алгебры 

Клиффорда 

η +  η  = 2 η,      (15.6) 

где 
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 – символы Кронекера   (15.7) 

Во втором случае, метод Дирака предполагает вместо символов Кронекера 

(15.7) использовать единичную матрицу 



Центр научного сотрудничества «Интерактив плюс» 
 

58     https://interactive-plus.ru 

Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0) 

,

1000

0100

0010

0001





















       (15.8) 

тогда условию (15.6) удовлетворяет, например, следующий набор 44-матриц 
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Эти матрицы можно рассматривать в качестве образующих соответствую-

щей алгебры Клиффорда. 

В этом случае выражение (15.3) приобретает матричный вид 
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Выражение (15.10) с учетом (15.8) может быть представлено в виде 
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Вернемся к квадратичной форме (15.1) и ее дираковскому расслоению 

(15.10) 
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Рассмотрим всевозможные варианты записи выражения (15.13). 

Воспользуемся следующим базисом из шестнадцати всевозможных γρ-мат-

риц Дирака: 
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(15.15)

 

Метод Дирака, в отличие от метода аффинных агрегатов, позволяет одно-

временно «расслаивать» сразу четыре метрических пространства с четырьмя 

метриками, являющимися компонентами матрицы (15.11). 

В Алгебре сигнатур рассматриваются квадратичные формы (13.7) с шестна-

дцатью всевозможными сигнатурами. 

Каждую из них можно также «расслоить» по методу Дирака 
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ii ,    (15.16) 

где 

(a) (b) = b 
(ab)

,     (15.17) 
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но в этом случае каждая b
(ab)-матрица имеет соответствующую сигнатуру: 
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(15.18)

 

Знаки перед единицами в диагональных b
(ab)-матрицах соответствуют 

наборам знаков в компонентах матрицы сигнатур (11.5). 

В этом пункте для краткости верхние индексы будем временно опускать и 

вместо «b
(ab)-матрица» будем писать «b-матрица». 

Вернемся к дираковскому «расслоению» квадратичной формы (15.10) 
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где 
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и рассмотрим всевозможные варианты ее раскрытия. 
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Каждой из шестнадцати γρ-матриц (15.15) можно подобрать вторую γ-мат-

рицу из этого же набора, такую, что их произведение равно b-матрице (15.20). 

Например: 
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(15.21) 

Каждая γρ-матрица (15.15) может иметь одну из 16-ти возможных стигна-

тур. Например: 
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(15.22)

 

Для каждой из этих γρ
ij-матриц также можно подобрать вторую γnj-мат-

рицу, произведение с которой приводит к b-матрице (15.20). Таким образом, с 

учетом 16-и стигнатур из 16-и γρ-матриц (15.15) получается 16 16 = 256 γρ
ij-

матриц. 

Каждую γρ
ij-матрицу (15.22) можно превратить в одну из 16-и смешанных 

матриц. Поясним данное утверждение на примере γ11
13-матрицы: 
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(15.23) 

При подобном размешивании всех двухсот пятидесяти шести γρ
ij-матриц 

(15.23) получается базис из 163 = 256  16 = 4096 nkγρ
ij-матриц. Следовательно, в 

этом случае b-матрица (15.20) может быть задана одной из 4096 произведений 

пар nkγρ
ij-матриц. 

В свою очередь, все шестнадцать b-матриц (15.18) могут быть заданы 

164 = 65536 различными вариантами парных произведений vc
nk

 γ lm
ij-матриц. 

Подобным образом можно продолжать наращивание базиса обобщенных γ-

матриц Дирака практически до бесконечности. 

Будем называть всю совокупность vc
nk

 γ lm
ij-матриц обобщенными матрицами 

Дирака, а mn-вакуум, препарированный посредством этих матриц, будем назы-

вать дираковским mn-вакуумом. 

16. Взрыв математических (вспомогательных) измерений 

Из ранжирного выражения (12.5) следует, что любая пара метрических 4 – 

протяженностей с взаимно противоположными сигнатурами может быть пред-

ставлена в виде двух сумм по семь метрических протяженностей с другими сиг-

натурами (топологиями), подобно (13.7). 
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Например, сопряженная пара метрик ds(– – + –)2 и ds(+ + – +)2 с взаимно противо-

положными сигнатурами (– – + –) и (+ + – +) может быть выражена через супер-

позицию семи 4 – подпространств с сигнатурами (топологиями) представлен-

ными в числителях ранжиров (12.5): 

ds(+ + – +)2 = dζ (+ + + +)2 + dζ (– + + +)2 + dζ (+ – – +)2 + dζ (– – – +)2 + 

+ dζ (+ + – –)2 + dζ (– + – –)2 + dζ (+ – + –)2.                         (16.1) 

и 

ds(– – + –)2 = dζ (– – – – )2 + dζ (+ – – –)2 + dζ (– + + –)2 + dζ (+ + + –)2 + 

+ d ζ (– – + +)2 + dζ (+ – + +)2 + dζ (– + – +)2,                            (16.2) 

Аналогично, из 256 метрик с сигнатурами (10.15) можно выделить 128 со-

пряженных пар метрик, каждая из которых может быть выражена через суперпо-

зицию 7 + 7 = 14-и 4-мерных под-метрик. В результате математических (вспомо-

гательных) измерений оказывается уже 128  14  4 = 3584. 

В свою очередь, сопряженные пары под-метрик могут быть точно так же 

разложены еще на суммы 7 + 7 = 14 под-под-метрик, и так может продолжаться 

до бесконечности. 

Получается сбалансированная относительно «расщепленного нуля» (12.3) 

теория, в которой «вакуум» сначала расслаивается на бесконечное количество 

вложенных друг в друга mn-вакуумов (т.е. продольных слоев «вакуума», смот-

рите пп. 4 – 6). Затем каждый из mn – вакуумов расщепляется на бесконечное 

количество 4-мерных метрических под – протяженностей, под-под-протяженно-

стей и т. д. до бесконечности – поперечных слоев «вакуума». 

Определение №16.1 Поперечное расслоение «вакуума» – это представление 

каждой локальной области mn-вакуума в виде суперпозиции 4-мерных метри-

ческих под- протяженностей, под-под-протяженностей и т. д., с 81-й возмож-

ной сигнатурой (11.6). 

Все, что говорилось до этого, касалось только одной возможности раскры-

тия Алгебры сигнатур (АС) относительно 4-базиса ei
(5)(e0

(5),e1
(5),e2

(5),e3
(5)), выбран-

ного в качестве базы, и правила умножения стигнатур (10.6). Аналогично, пере-
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бирая в качестве базы все остальные 4 – базисы (рис. 6.3), получим 16 бесконеч-

ных раскрытий АС. Но в силу асимметрии действенными останутся только 10 из 

них. 

До тех пор, пока локальный участок «вакуума» не искривлен, все 10 беско-

нечных раскрытий АС на этом участке полностью идентичны. Однако в случае 

искривления «вакуума», данные 10 разновидностей АС будут по-разному ориен-

тированы относительно искривления, и могут раскрываться по-разному. 

Определение №16.2 «Каббалистическая аналогия» – это сходство Алгебры 

сигнатур (АС) с системой «Древа Десяти Сфирот» лурианской каббалы: 

Согласно лурианской каббале Имя ВСЕВЫШНЕГО ה-ו-ה  ,в дальнейшем) י-

вместо букв иврита используется транслитерация H V H I) Раскрывается в 

виде «Древа десяти Сфирот», которое можно получить путем возведения в 

квадрат двурядной матрицы из Букв данного Имени: 
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 (16.3) 

Компоненты данной матрицы соответствуют 10 Сфирам: 

Таблица 16.1 

 

Буква Имени 
Компонента матрицы 

(16.3) 
Сфира 

i 

острие Буквы Йюд 
II Кетер 

I HH Хохма 

H VV Бина 

V 
IV, IH, IH, VH, VH, HH 

VI, HI, HI, HV, HV, HH 
Тиферет* 

H HH Малхут 
 

где Сфира Тиферет* состоит из шести сдвоенных Сфирот: 

Хесед (IV = VI) Гвура (IH = HI) Тиферет (IH = HI). 

Нецах (VH=HV) Ход (VH = VH) Йесод (HH = HH). 
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Несколько трансформированную матрицу (16.3) можно поставить в соот-

ветствие с матрицей сигнатур (11.5). 
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где 
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 (16.6) 

При этом, как каждая каббалистическая Сфира состоит из бесконечного 

множества под-Сфирот, так и каждая сигнатура является результатом су-

перпозиции бесконечного количества под-сигнатур (смотрите, например (16.1) 

и (16.2). 

17. Светогеометрия искривленного участка «вакуума» 

Рассмотрим искривленный 3-мерный участок «вакуума». Если длина волны 

mn пробных монохроматических лучей света значительно меньше размеров не-

ровностей «вакуума», то на этом участке кубическая ячейка светового 3D-ланд-

шафта (mn -вакуума) будет искривлена (рис. 17.1). 

 

Рис. 17.1. Деформированная кубическая ячейка mn-вакуума 
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Рис. 17.2. Один из углов исследуемого куба mn-вакуума 
 

Рассмотрим одну из восьми вершин искривленного куба mn-вакуума 

(рис. 17.1 и 17.2). Заменим искаженные ребра, выходящие из данной вершины, 

искаженными осями криволинейной системы координат x0(а), x1(а), x2(а), x3(а) 

(рис. 17.2). Те же ребра исходного, идеального куба обозначим псевдодекартовой 

системой координат x0(а), x1(а), x2(а), x3(а). 

Искажения угла рассматриваемого куба mn-вакуума можно разложить на 

две составляющие: 1) изменение длин (сжатие или расширение) осей x0(а), x1(а), 

x2(а), x3(а) при сохранении прямых углов между этими осями; 2) отклонения углов 

между осями x0(а), x1(а), x2(а), x3(а) от прямых при сохранении их длин. Рассмот-

рим данные аффинные искажения по отдельности. 

1. Пусть при искривлении изменились только длины осей x0(а), x1(а), x2(а), 

x3(а), тогда эти оси можно выразить через оси исходного идеального куба x0(а), 

x1(а), x2(а), x3(а) с помощью соответствующих преобразований координат: 

x0(а) = α00
(а)x0(а) + α01

(а)x1(а) + α02
(а)x2(а) + α03

(а)x3(а); 

x1(а) = α10
(а)x0(а) + α11

(а)x1(а) + α12
(а)x2(а) + α13

(а)x3(а);                           (17.1) 

x2(а) = α20
(а)x0(а) + α21

(а)x1(а) + α22
(а)x2(а) + α23

(а)x3(а); 

x3(а) = α30
(а)x0(а) + α31

(а)x1(а) + α32
(а)x2(а) + α33

(а)x3(а), 

где 

αij
(a) = dxi(a)/dxj(a)     (17.2) 

– якобиан преобразования, или компоненты тензора удлинений. 

2. Пусть теперь изменению подвержены только углы между осями системы 

координат x0(а), x1(а), x2(а), x3(а), а длины этих осей остаются неизменными. В 
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этом случае достаточно рассмотреть только изменение углов между базисными 

векторами e0
(a), e1

(a), e2
(a), e3

(a) искаженной системы отсчета. 

Из векторного анализа известно, что базисные вектора искаженного 4-ба-

зиса e0
(a), e1

(a), e2
(a), e3

(a) могут быть выражены через исходные базисные вектора 

e0
(a), e1

(a), e2
(a), e3

(a) ортогонального 4-базиса посредством следующей системы ли-

нейных уравнений: 

e0
(a) = β00(a) e0

(a) + β01(a) e1
(a) + β02(a) e2

(a) + β 
03(a) e3

(a); 

e1
(a) = β10(a) e0

(a) + β11(a) e1
(a) + β12(a) e2

(a) + β13(a) e3
(a);                          (17.3) 

e2
(a) = β20(a) e0

(a) + β21(a) e1
(a) + β22(a) e2

(a) + β23(a) e3
(a); 

e3
(a) = β30(a) e0

(a) + β31(a) e1
(a) + β32(a) e2

(a) + β03(a) e3
(a), 

где 

βpm(a) = (ep
(a) em

(a)) = cos (ep
(a) ^em

(a))    (17.4) 

– направляющие косинусы; 

Системы уравнений (17.1) и (17.3) могут быть представлены в компактном 

виде: 

xi 
(a) = αij

(a) x j(a)     (17.5) 

и 

ep
(a) = βpm(a) em

(a).     (17.6) 

Остальные 7 углов искаженного куба mn-вакуума (рис. 17.1) (точнее, пят-

надцать оставшихся 4-базисов, рис. 6.2, 6.3) описываются аналогичным образом. 

Рассмотрим, для примера, вектор (10.1) в искаженном 4-базисе 

ds (7) = ei(7) dx i (7)     (17.7) 

С учетом (17.5) и (17.6) вектор (17.7) можно представить в виде 

ds (7) = β pm(7) em
(7)αpj

(7)dxj(7),    (17.8) 

Аналогично, все вершины искаженного куба mn-вакуума могут быть пред-

ставлены векторами 

ds (a) = β pm(a) em
(a) αpj

(a)dxj(a),    (17.9) 

где а = 1, 2, …, 16. 
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18. Искривленные метрические 4-пространства 

Для примера, рассмотрим два вектора (10.1) и (10.2), но заданных в 5-м и 7-

м искривленных аффинных пространствах с векторами 

ds (5)= βln(5)en
(5)αlj

(5)dxj,     (18.1) 

ds (7)= βpm(7)em
(7)αpi

(7)dxi
.     (18.2) 

Найдем скалярное произведение этих векторов 

ds (7,5)2 = ds (7)ds (5) = βpm(7)em
(7)αpi

(7)βln(5)en
(5)αlj

(5)dxidxj = сij
(7,5)dxidxj  (18.3) 

где 

сij
(7,5)= β

pm(7)em
(7)αpi

(7)βln(5)en
(5)αlj

(5)    (18.4) 

– компоненты метрического тензора (7,5)-го метрического 4-пространства. 

Таким образом, получена метрика (7,5)-го метрического 4-пространства 

ds (7,5)2 = сij
(7,5)dxidxj     (18.5) 

с сигнатурой (10.5) (+ + + –) и метрическим тензором 
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Аналогично скалярное попарное произведение двух любых векторов (17.9) 

ds (a)= βpm(a)em
(а)αpi

(a)dxi,     (18.7) 

ds (b) = βln(b)en
(b)αlj

(b)dxj
     (18.8) 

приводит к формированию атласа, состоящего из 16 × 16 = 256 всевозможных 

искривленных 4-мерных листов (т.е. метрических 4-подпространств) с метри-

ками 

ds (a, b)2 = сij
(a, b)dxidxj,     (18.9) 

где а = 1, 2, 3,…,16; b= 1, 2, 3,…,16, с соответствующими сигнатурами (10.15) и 

метрическими тензорами 
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где 

сij
(a, b)= β

pm(a)em
(a)αpi

(a)βln(b)en
(b)αlj

(b)    (18.11) 

– компоненты метрического тензора (a,b)-го искривленного метрического 

4-подпространства. 

19. Тензор 4-деформаций 

В классической теории упругости актуальное состояние локального объема 

упруго-пластичной среды, как правило, описывается только одной «вморожен-

ной» в нее системой отсчета с соответствующим 4-базисом. Это приводит к ана-

лизу только одной квадратичной формы вида 

ds 2 = gij dxjdxj
,
      (19.1) 

где gij – компоненты метрического тензора локального участка искривленной 

метрической протяженности (данных компонент 16, но из них действенными яв-

ляются только 10 в силу симметрии gji = gij). 

Квадратичную форму (19.1) сравнивают с квадратичной формой исходного 

идеального состояния того же локального участка упруго-пластичной среды [13] 

ds0
2 = gij

0dxidxj.      (19.2) 

Вычитая метрику исходного состояния (19.2) из метрики актуального состо-

яния (19.1), получим [13] 

ji

ij

ji

ijij dxdxdxdxggdssd 2)( 02

0

2  ,     (19.3) 

где 

)(
2

1 0
ijijij gg  ,      (19.4) 

– тензор 4-деформаций. 

Развиваемые здесь представления отличаются от классической механики 

сплошных сред лишь тем, что исследуемый участок (куб) упруго-пластичной 

среды (в данном случае mn-вакуума) описывается не одним 4-базисом, связан-

ным с одним из восьми углов исследуемого куба (рис. 17.1), а со всеми шестна-

дцатью 4-базисами (рис. 6.3) (по два 4-базиса в каждой вершине исследуемого 

куба). 



Центр научного сотрудничества «Интерактив плюс» 
 

70     https://interactive-plus.ru 

Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0) 

Данное обстоятельство приводит к тому, что вместо одной метрики типа 

(19.1) в Алгебре сигнатур, фигурирует 256 метрик (18.9). 

ds(a,b)2 = сij
(a,b)dxidxj       (19.5) 

с соответствующими сигнатурами (10.15), которые описывают один и тот же 

объем, исследуемой протяженности (в частности «вакуума») с разных его сто-

рон. При этом метрико-динамическое состояние исследуемого объема описыва-

ется не 16-ю числами (компонентами метрического тензора gji), а 256  16 = 4096-

ю компонентами 256-ти тензоров сji
(a,b) (18.11). Этим достигается не только зна-

чительно более точное описание искривленного объема упруго-пластичной 

среды (в частности, mn-вакуума) в окрестности точки О (рис. 6.1), но и обеспе-

чивается логическое обоснование для выявления ряда более тонких вакуумных 

эффектов (которые планируется рассмотреть в следующих статьях). 

Развиваемый АС математический аппарат светогеометрии подходит для ис-

следования не только «вакуума», но и любых других 3-мерных сплошных сред, 

в которых волновые возмущения (свет, звук, фононы) распространяются с посто-

янной скоростью. 

20. Первый этап компактификации искривленных измерений 

Подобно п. 11, на первом этапе компактификация дополнительных (вспомо-

гательных) искривленных математических измерений в АС достигается посред-

ством усреднения метрических 4-пространств с одной и той же сигнатурой. 

Например, для метрик с сигнатурой (– + – +) (рис. 11.1) имеем усредненный 

метрический тензор. 
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где p соответствует 14-й сигнатуре (– + – +), согласно следующей условной ну-

мерации: 

 

       
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р
ijсsign

,

   (20.2)  

и усредненную метрику 

<ds(– + – +) 2> = сij
(14)dxi

 dxj.     (20.3) 

Аналогично, из-за 16-кратной вырожденности из 256 метрик (18.9) искрив-

ленных 4 – подпространств получается 256 : 16 = 16 усредненных метрик с 16-ю 

возможными сигнатурами 

<ds(+– – –)2> <ds(+ + + +)2> <ds(– – – +)2> <ds(+ – – +)2 > 

<ds( – – + –)2> <ds(+ + – –)2> <ds(– + – –)2> <ds(+ – + –)2>                   (20.4) 

<ds(– + + +)2> <ds(– – – – )2> <ds(+ + + –)2> <ds (– + + –)2> 

<ds(+ + – +)2> <ds(– – + +)2> <ds(+ – + +)2> <ds(– + – +)2>, 

где ‹ · › – означает усреднение. 

Аддитивное наложение (т.е. усреднение) всех этих 16-ти усредненных мет-

рик (19.4), согласно «mn-вакуумному условию» (опр. 12.4), должно равняться 

нулю. 
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   (20.5) 

Все 16 × 16 = 256 компонентов 16-ти усредненных метрических тензоров 

сij
(p) могут быть случайными функциями времени стороннего наблюдателя. Но 

эти функции, согласно вакуумному условию, должны так переливаться друг в 

друга, чтобы суммарная метрика (20.5), в среднем, всегда оставалась равной 

нулю. 

На основании суммарной метрики (20.5) может быть развита mn-вакуумная 

термодинамика, рассматривающая сложнейшие, около-нулевые «переливания» 

локальных mn – вакуумных искривлений. Могут быть введены представления о 

mn-вакуумной энтропии и температуре (суть хаотичности и интенсивности ло-

кальных mn-вакуумных флуктуаций). Можно говорить об охлаждении mn-ва-

куума до «замораживания», о его подогреве до «испарения» и о многих других 

эффектах, схожих с процессами, протекающими в обычных (атомистических) 

сплошных средах. Особенности mn-вакуумной термодинамики связаны с про-

цессами, когда градиенты mn-вакуумных флуктуаций приближаются к скорости 

света: dсij
(p)/dxa ~ c или к нулю dсij

(p)/dxa ~ 0. Более детальное рассмотрение mn-

вакуумной термодинамики выходит за рамки настоящей статьи. 

21. Второй этап компактификации искривленных измерений 

Подобно тому, как это было сделано в п. 13, выражение (20.5) можно свести 

к двум слагаемым 

‹ds(-)2› + ‹ds(+)2› = ‹gij
(+)›dxidxj + ‹gij

(-)›dxidxj = 0,   (21.1) 

где 

     



 
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1

р

jiр

ijj
ji

ijjiij dxdxсdxdxgdxdxg     (21.2) 
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– квадратичная форма, являющаяся результатом усреднения семи метрик из 

(20.4) с сигнатурами, входящими в числитель левого ранжира (13.1); 

     


 
14

87

1

р

jiр

ij

ji

ijjiij dxdxсdxdxgdxdxg     (21.3) 

– квадратичная форма, являющаяся результатом усреднения семи усреднен-

ных метрик из (20.4) с сигнатурами, входящими в числитель правого ранжира 

(13.1). 

Таким образом, из всей совокупности mn-вакуумных флуктуаций можно 

выделить: 

– усредненную «внешнюю» сторону 23-mn-вакуумной протяженности (или 

усредненный субконт) с усредненной метрикой 

ds(+ – – –)2 = ds(-)2 = gij
(-)dxidxj с сигнатурой (+ – – –),   (21.4) 

где  
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(21.5) 

– усредненную «внутреннюю» сторону 23-mn-вакуумной протяженности 

(или усредненный антисубконт) с усредненной метрикой 

ds(– + + +)2 = ds(+)2 = gij
(+)dxidxj с сигнатурой (– + + +),  (21.6) 

где  
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Для сокращения записей знаки усреднения в метриках (21.4) – (21.7) опу-

щены. 

На рис. 21.1 условно показан усредненный участок двухсторонней 23-mn-

вакуумной протяженности, внешняя сторона которой (субконт) описывается мет-

рикой ds(-)2 (21.4), а внутренняя сторона (антисубконт) – метрикой ds(+)2 (21.6). 



Центр научного сотрудничества «Интерактив плюс» 
 

74     https://interactive-plus.ru 

Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0) 

4-мерная внешняя сторона 

ВП 

 

ds(–)2 = gij
(–)dxidxj

 , 

сигнатура (+ – – –) 

 

 

4-мерная внутренняя сто-

рона ВП 

 

ds(+)2 = gij
(+)dxidxj , 

сигнатура (– + + +) 

 

Рис. 21.1. Упрощенная иллюстрация участка двухсторонней  

23-mn-вакуумной протяженности (ВП), внешняя сторона которой  

описывается 4-метрикой ds(-)2, а внутренняя сторона - 4-метрикой ds(+)2, 

 при ε → 0 

 

22. Тензор 4-деформаций 23-mn-вакуумной протяженности 

Пусть исходное неискривленное метрико-динамическое состояние исследу-

емого участка внешней стороны 23-mn-вакуумной протяженности (т.е. усред-

ненного субконта) характеризуется усредненной метрикой 

ds0
(-)2 = gij0

(-)dxi
 dxj с сигнатурой (+ – – –),   (22.1) 

а искривленное состояние того же участка задается усредненной метрикой 

ds(-)2 = gij
(-)dxi dxj с той же сигнатурой (+ – – –).   (22.2) 

Отличие искривленного состояния участка субконта от его неискривлен-

ного состояния определяется разницей вида (19.3) 

ds(-)2 – ds0
(-)2 = (gij

(-) – gij0
(-)) dxidxj = 2ij

(-)dxidxj,   (22.3) 

где 

ij
(-) = ½ (gij

(-) – gij0
(-))     (22.4) 

– тензор 4-деформаций локального участка субконта. 

Относительное удлинение искривленного участка субконта равно [13] 
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Откуда следует 

ds(-)2 = (1 + l(-))2ds0
(-)2.     (22.6) 

Подставляя (22.6) в (22.3) с учетом (22.4) имеем [15] 

ij
(-) = ½ [(1 + l(-))2 – 1] gij0

(-),    (22.7) 

или в развернутом виде 

ij
(-) = ½ [(1 + li

(-))(1 + lj
(-)) cosij

(-) – cosij0
(-)] gij0

(-),   (22.8) 

где 

ij0
(-) – угол между осями xi и xj системы отсчета, «вмороженной» в исходное не-

искривленное состояние исследуемого участка субконта; 

ij
(-) – угол между осями xi и xj искаженной системы отсчета «вмороженной» в 

искривленное состояние того же участка субконта. 

При ij0
(-) = /2 выражение (22.8) принимает вид 

ij
(-) = ½ [(1 + li

(-))(1 + lj
(-)) cosij

(-) – 1] gij0
(-).    (22.9) 

Для диагональных компонентов тензора 4-деформаций ii
(-)выражение (22.9) 

упрощается 

ii 
(-) = ½ [(1 + li

(-))2 – 1] gii0
(-),     (22.10) 

откуда следует [15] 
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Если деформации ij
(-) малы, то, разложив выражение (22.11) в ряд, и, огра-

ничившись первым членом ряда, получим относительное удлинение субконта 

)(0
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
 

ii

ii
i

g
l


.      (22.12) 

Аналогично, деформация локального участка внутренней стороны 23-mn-

вакуумной протяженности (усредненного антисубконта) определяется выраже-

нием 

ds(+)2 – ds0
(+)2 = (gij

(+) – gij0
(+))dxidx j = 2ij

(+)dxidx j,   (22.13) 

где 

ij
(+) = ½ (gij

(+) – gij0
(+))     (22.14) 

– тензор 4-деформаций локального участка антисубконта; 
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ds0
(+)2 = gij0

(+)dxidxj с сигнатурой (– + + +)    (22.15) 

– метрика неискривленного состояние антисубконта; 

ds (+)2 = gij
(+)dxidxj с той же сигнатурой (– + + +)   (22.16) 

– метрика искривленного состояние антисубконта. 

Относительное удлинение антисубконта 
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Определим тензор 4-деформаций двусторонней 23-mn-вакуумной протя-

женности как среднее 

ij
(±) = ½ (ij

(+) + ij
(-)) = ½ (ij

(- + + +) + ij
(+ – - -)),   (22.18) 

или, с учетом (22.4) и (22.14) 

ij
(±) = ½ (gij

(+) + gij
(-)) – ½ (gij0

(+) + gij0
(-)) = ½ (gij

(+) + gij
(-)),   (22.19) 

т.к. согласно «вакуумному условию» (4.6): 

gij0
(+) + gij0

(-) = gij0
(– + + +) + gij0

(+ – – –) = 0. 

Относительное удлинение локального участка двухсторонней 23-mn-ваку-

умной протяженности li
(±) в этом случае следует вычислять с помощью формулы 

 )()(
2

1)(   iii lll ,      (22.20) 

где 
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   (22.21) 

Поскольку в любом случае одна из компонент gij0
(-) или gij0

(+) является отри-

цательным числом, относительное удлинение (22.21) это комплексное число. 

В этой связи, отметим следующее важное обстоятельство. Если обе стороны 

выражения (22.19) умножить на dxidxj, то получим усредненную квадратичную 

форму 

ds(±)2 = 
2

1 (ds(-)2 + ds(+)2),     (22.22) 

которая напоминает теорему Пифагора a2 + b2 = c2. Это означает, что отрезки ли-

ний ( 2
1 )1/2ds(-)

 и ( 2
1 )1/2ds(+) всегда взаимно перпендикулярны по отношению друг 

к другу: ds (-)
 ds (+) (рис. 22.1), а две линии, направленные в одном и том же 
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направлении, могут быть всегда взаимно перпендикулярны только в том случае, 

когда они образуют двойную спираль (рис. 22.2). 

 

Рис. 22.1. Соотношение отрезков ds(–)
 и   ds(+) 

 

 

Рис. 22.2. Если спроецировать такую двойную спираль на плоскость, то в месте 

пересечения ее линии всегда взаимно перпендикулярны  

 

Таким образом, усредненная метрика (22.22) соответствует отрезку 

«жгута», состоящего из двух взаимно перпендикулярных спиралей s(-)
 и s

(+). При 

этом, так же как усредненное относительное удлинение (22.21), участок данной 

«двойной спирали» можно описать комплексным числом 

ds (±)= 2
1 (ds (-)+ids (+)),     (22.23) 

квадрат модуля которого равен (22.22). 

Определение №22.1 k-жгут – это результат усреднения метрик с разными 

сигнатурами (где k – число усредняемых метрик, т.е. число «нитей» в 

«жгуте»). 

В частности, усредненная метрика (22.22) называется 2-жгутом, так как она 

«скручена» из 2-х линий («нитей»): 

ds(-)
 = ds (+ – – –)

 и ds(-) = ds(– + + +). 
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На следующем более глубинном 16-стороннем уровне рассмотрения мет-

рико-динамические свойства локального участка 26-mn-вакуумной протяженно-

сти характеризуются суперпозицией (т.е. аддитивным наложением или усредне-

нием) шестнадцати 4-метрик со всеми 16-ю возможными сигнатурами (11.5), 

т.е. 16-жгутом: 

ds2 = 1/16 (ds(+ – – –)2 + ds(+ + + +)2 + ds(– – – +)2 + ds(+ – – +)2 + 

+ ds(– – + –)2 + ds(+ + – –)2 + ds(– + – –)2 + ds(+ – + –)2 +   (22.24) 

+ ds(– + + +)2 + ds(– – – – )2 + ds(+ + + –)2 + ds(– + + –)2 + 

+ ds(+ + – +)2 + ds(– – + +)2 + ds(+ – + +)2 + ds(– + – +)2) = 0. 

В этом случае имеем 16 тензоров 4-деформаций всех типов 4-пространств 
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 ,    (22.25) 

где 

ij
(p) = ½ (сij

(p) – сij0
(p))    (22.26) 

– тензор 4-деформаций p-го 4-подпространства; 

сij0
(p) – метрический тензор неискривленного участка p-го 4-подпространства; 

сij
(p) – метрический тензор того же, но искривленного участка p-го 4-подпростран-

ства. 

При 16-стороннем уровне рассмотрения общий тензор 4-деформаций ij(16) 

локального участка 26-mn-вакуумной протяженности равен 

ij(16)
 = 1/16 (ij 
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(16)),   (22.27) 

а относительное удлинение локального участка «вакуума» 
)16(il в этом случае сле-

дует вычислять по формуле 

li
 
(16)

 = η1 li
 (1)

(16)
 + η2 li

 (2)
(16)

 + η3 li
 (3)

(16)
 +…+ η4 li

 (16)
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,  (22.28) 

где 

1
2

1
)(0

)16()(

)16( 
p

ii

iip

i
c

l
 .     (22.29) 
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где ηm (где m = 1, 2, 3, …, 16) – ортонормированный базис объектов, удовлетво-

ряющих антикоммутационному соотношению алгебры Клиффорда 

ηmηn + ηnηm = 2δmn,      (22.30) 

где δnm – единичная 1616-матрица. 

При этом участок 16-жгута состоит из шестнадцати «нитей»: 

                      ds 
(16)

 = η1 ds(+– – –) + η2 ds(+ + + +) + η3 ds(– – – +) + η4 ds(+ – – +) + 

 

+ η5 ds(– – + –) + η6 ds(+ + – –) + η7 ds(– + – –) + η8 ds(+ – + –) +                 (22.31) 

 

+ η9 ds(– + + +) + η10
 ds(– – – –) + η11 ds(+ + + –) + η12 ds (– + + –) + 

 

+ η13 ds(+ + – +) + η14
 ds(– – + +) + η15 ds(+ – + +) + η16 ds(– + – +) = 0. 

 

Если все линейные формы ds(+– – –), ds(+ + + +), …, ds(– + – +) удается представить 

в диагональном виде, то в соответствии с (14.13) выражение (22.31) можно пред-

ставить в спинтензорном виде 
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Возможны еще более глубинные 2n-сторонние уровни рассмотрения мет-

рико – динамических свойств «вакуума» (пп. 1.2.9, 1.2.13 в [7]), с увеличением 

количества компонент метрического тензора до бесконечности. 

23. Физическая интерпретация ненулевых компонент  

метрического тензора 

Пусть метрико-динамические состояния двух 4-мерных сторон локального 

участка 23-mn-вакуумной протяженности задаются метриками (21.5) и (21.7). 

Тогда ненулевые компоненты метрических тензоров (21.6) и (21.8) 
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    (23.1) 

определяют локальную пространственную кривизну 3-мерной ячейки «ваку-

ума». Здесь индексы α, β греческого алфавита соответствуют 3-мерному рассмот-

рению (α, β = 1,2,3). 

Скалярная кривизна 3-мерной ячейки «вакуума» при двухстороннем рас-

смотрении в рамках АС определяется усредненным выражением [2] 

R(±) = 
2

1 (R(–)+R(+)),      (23.2) 
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где скалярная кривизна каждой из двух сторон определяется так же, как в ОТО 

R(-) = g(-)αβRαβ
(-) и R(+) = g(+)αβRαβ

(+),    (23.3) 

где 

l

m

m

l

m

lm

l
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Г
R 



 

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




    
(23.4) 

– тензор Риччи соответственно внешней (-), или внутренней (+) «стороны» 

ячейки «вакуума»; 






































x

g

x

g

x

g
gГ

2

1     
 
(23.5) 

– символы Кристоффеля соответственно внешней (-), или внутренней (+) 

стороны, где gαβ это, соответственно, g(-)αβ или g(+)αβ. 

Тензор 3-деформаций 3-мерной ячейки «вакуума» в этом случае задается 

усредненным выражением 

 αβ
 (±) = ½ (αβ

 (+) +  αβ
 (-)),     (23.6) 

где 

αβ 
(-) = ½ (gαβ

(-) – g αβ0
(-))     (23.7) 

– тензор 3-деформаций внешней стороны ячейки «вакуума»; 

αβ 
(+) = ½ (gαβ

(+) – g αβ0
(+))     (23.8) 

– тензор 3-деформаций внутренней стороны ячейки «вакуума». 

Теория деформации локальной 3-мерной области «вакуума» может быть 

развита по аналогии с теорией упругости обычных (атомистических) сплошных 

упруго-пластических сред [13] при учете двухстороннего (или 2n-стороннего) 

рассмотрения. 

24. Физическая интерпретация нулевых компонент метрического тензора 

Для выяснения физического смысла нулевых компонент метрических тен-

зоров (21.6) и (21.8) 
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воспользуемся кинематикой двухсторонней 23-mn -вакуумной протяженности. 

Пусть исходное (неподвижное и неискривленное) состояние 23-mn-вакуум-

ной протяженности задается совокупностью псевдоевклидовых метрик (7.3) и 

(7.4) 

 

ds0
(-)2= с2dt2 – dх2 – dy 2 – dz 2 = ds(-)ds(-) =      сdtсdt– dxdx– dydy– dz dz, 

ds0
(+)2= – с2dt2 +dx2+ dy 2+ dz2 = ds(+)ds(+) = – сdtсdt+ dxdx+ dydy+dz dz, 

(24.2) 

(24.3) 

где 

ds(-) = с dt + idx+ jdy+ kdz  – личина субконта;    (24.4) 

ds(-) = с dt+ idx+ jdy+ kdz  – изнанка субконта;   (24.5) 

ds(+) = – с dt+ idx+ jdy+ kdz  – личина антисубконта;   (24.6) 

ds(+) = с dt- idx- jdy- kdz  – изнанка антисубконта   (24.7) 

– аффинные агрегаты, в частности, кватернионы с таблицей умножения 

мнимых единиц типа 

Таблица 24.1 

 

 i j k 

i –1 k –j 

j –k –1 i 

k j –i –1 
 

Определение №24.1 Личина субконта – это аффинная 4-мерная протяжен-

ность с интервалом типа ds(-) = с dt + idx+ jdy+ kdz . 

Определение №24.2 Изнанка субконта – это аффинная 4-мерная протяжен-

ность с интервалом типа ds(-) = с dt+ idx+ jdy+ kdz . 

Определение №24.3 Личина антисубконта – это аффинная 4-мерная протя-

женность с интервалом типа ds(+) = – с dt+ idx+ jdy+ kdz . 

Определение №24.4 Изнанка антисубконта – это аффинная 4-мерная протя-

женность с интервалом типа ds(+) = с dt- idx- jdy- kdz . 

Рассмотрим четыре случая: 

1. Пусть в первом случае личина и изнанка внешней и внутренней сторон 23-

mn-вакуумной протяженности (т.е. субконта и антисубконта) двигаются отно-
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сительно исходного неподвижного состояния вдоль оси x с одной и той же ско-

ростью vx, но в разных направлениях. Это формально описывается преобразова-

нием координат: 

t = t, x = x + vx t, y= y, z= z – для личины;    (24.8) 

t= t, x = x – vxt, y= y, z= z – для изнанки.   (24.9) 

Равенство модулей скоростей движения vx личины и изнанки обусловлены 

«вакуумным условием», которое требует, чтобы каждому движению в «вакууме» 

соответствовало адекватное антидвижение. 

Продифференцировав (24.8) и (24.9), и подставив результаты дифференци-

рования в метрики (24.2) и (24.3), получим совокупность метрик 

 

ds(-)2= (1+ vx
2/с2)c2dt2- dx2 – dy2 – dz2; 

ds(+)2= – (1+ vx
2/с2)c2dt2+ dx2+ dy2+dz2, 

(24.10)  

(24.11) 

 описывающих кинематику совместного движения внешней и внутренней сторон 

23-mn-вакуумной протяженности (субконта и антисубконта), при соблюдении 

«вакуумного баланса»: 

ds(-)2 + ds(+)2 = 0. 

2. Во втором случае, пусть личина и изнанка субконта и антисубконта дви-

гаются относительно их исходного неподвижного состояния в одном и том же 

направлении – вдоль оси х с одной и той же скоростью vx. Это формально опи-

сывается преобразованиями координат: 

t= t, x = x – vx t, y= y, z= z – для «личины»;   (24.12) 

t= t, x = x – vxt, y= y, z= z – для «изнанки».   (24.13) 

Продифференцировав (24.12) и (24.12) и подставив результаты дифферен-

цирования в метрики (24.2) и (24.3), получим совокупность метрик: 

 

ds(-)2 = (1- vx
2/с2)c2dt2 + vxdxdt + vxdtdx – dx2 – dy2 – dz2,  

ds(+)2 = – (1- vx
2/с2)c2dt2 – vxdxdt – vxdxdt + dx2+ dy2+ dz2. 

(24.14) 

(24.15) 

В этом случае вакуумный баланс также соблюдается, т.к. ds(-)2 + ds(+)2 = 0, но 

возникают дополнительные перекрестные слагаемые vxdxdt. 

Нулевые компоненты метрических тензоров (24.1) во втором, более общем 

случае равны 
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3. Пусть личина и изнанка субконта и антисубконта (внешней и внутренней 

сторон 23-mn-вакуумной протяженности) вращаются вокруг оси z в одном и том 

же направлении с угловой скорость . Это описывается посредством замены пе-

ременных: 

t = t, x = x cos t – y sin t, z = z, y= x sin t + y cos t,   (24.17) 

t = t, x = x cos t – y sin t, z = z, y = x sin t + y cos t.  (24.18) 

Продифференцировав (24.17) и (24.18) и подставив результаты дифферен-

цирования в метрики (24.2) и (24.3), получим метрики [14] 

 

ds(-)2= [1- ( 2 /с2)(х2 +у2)]с2dt2+2 уdxdt – 2 хdydt – dx2 – dy2 – dz2,  

ds(-)2= – [1- ( 2 /с2)(х2 +у2)]с2dt2–2 уdxdt +2 хdydt + dx2 + dy2 + dz2.  

(24.19) 

(24.20) 

В цилиндрических координатах 

 2= х2+ у2, z = z, t = t,  = arctg(y/x) –  t.    (24.21) 

метрики (24.19) и (24.20) приобретают вид 

 

ds(-)2= (1 –  2 2/с2) с2dt2 –  2 /с ddt –  2 /с dtd – d 2 –  2d 2 – dz2, 

ds(+)2 = – (1 –  2 2/с2) с2dt2 + 2 /сddt + 2 /сdtd + d 2 + 2d 2 + dz2. 

(24.22) 

(24.23) 

При этом компоненты метрических тензоров (24.1) равны 
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   (24.24) 

4. Также может быть рассмотрен случай, когда личина и изнанка субконта и 

антисубконта вращаются во взаимно противоположных направлениях с угловой 

скорость . Это описывается посредством замены переменных: 

t = t, x = x cos t – y sin t, z = z, y = x sin t + y cos t,   (24.25) 

t= t, x = – x cos t + y sin t, z= z, y = – x sin t – y cos t.  (24.26) 

и приводит к аналогичным результатам. 
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Из рассмотренных примеров видно, что нулевые компоненты метрического 

тензора связаны с поступательным и/или вращательным движением различных 

сторон 23-mn -вакуумной протяженности. 

Состояние движения локального 3-мерного участка «вакуума» характеризу-

ется усредняемыми нулевыми компонентами метрического тензора 

  .)(

0

)(

02
1)(   jiij ggg       (24.27) 

Во всех четырех рассмотренных случаях усредненные нулевые компоненты 

метрического тензора (24.27) равны нулю   0)(

0

)(

02
1)(  

jiij ggg . Это означает, что 

внутри локального 3-мерного участка «вакуума» могут протекать взаимно про-

тивоположные внутривакуумные процессы, но, в целом, этот участок остается 

неподвижным. 

Тем не менее, возможны случаи, когда внутривакуумные процессы за счет 

фазовых сдвигов могут компенсировать друг друга не локально, а глобально. В 

этом случае локальный 3-мерный участок «вакуума» может участвовать (как це-

лое) в некотором замысловатом замкнутом движении. Рассмотрим такой случай 

на конкретном примере. Пусть в некотором локальном участке «вакуума» кине-

матика внутривакуумных процессов такова, что 

t = t, x = x + v1x t, y= y, z= z – для личины субконта;   (24.28) 

t= t, x = x – v2xt, y= y, z= z – для изнанки субконта;   (24.29) 

t = t, x = x + v3x t, y= y, z= z – для личины антисубконта;  (24.30) 

t= t, x = x – v4xt, y= y, z= z – для изнанки антисубконта,  (24.31) 

где v1x ≠ v2x ≠ v3x ≠ v4x, но соблюдается общий баланс движения 

v1x – v2x + v3x – v4x = 0.     (24.32) 

В этом случае внешняя и внутренняя стороны 23-mn-вакуумной протяжен-

ности (субконта и антисубконта) описываются совокупностью метрик 

 

ds(-)2= (1+ v1x
 v2x/с

2)c2dt2 – v1xdtdx + v2xdxdt- dx2 – dy2 – dz2;  

ds(+)2= – (1+ v3x
 v4x/с

2)c2dt2 + v3xdtdx – v4xdxdt + dx2 + dy2 + dz2,  

(24.33) 

(24.34) 
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при этом не равные нулю усредненные нулевые компоненты метрического тен-

зора (24.27) имеют вид 

g00
 (±) = (v1x

 v2x – v3x
 v4x)/2с2, g01

 (±) = (v3x – v1x)/2, g10
 (±) = (v2x – v4x)/2  (24.35) 

при (v1x + v3x) – (v2x + v4x) = 0. (24.36) 

Это означает, что рассматриваемый 3-мерный локальный участок «ваку-

ума» участвует в замысловатом движении вдоль оси х при формальном соблю-

дении «вакуумного баланса» в отношении полного количества движения (24.32). 

25. Предельная скорость перемещения слоев mn -вакуума 

Зададимся вопросом: – «любая ли скорость может быть у сторон 23-mn-ва-

куумной протяженности?» Рассмотрим данный вопрос на примере метрики 

(24.14) 

ds(-)2 = (1- vx
2/с2)c2dt2 + 2vxdxdt – dx2 – dy2- dz2.   (25.1) 

Выделим в (25.1) полный квадрат 
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и введем обозначения 

,

1
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сс

x

xx


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2
zzyy

c

v

х
xtt

x
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

   (25.3) 

В этих обозначениях метрика (25.1) принимает вид 

222222)( '' zdydxddtcds 
.    (25.4) 

Физический смысл выражений (25.2) – (25.4) в корне отличается от аксио-

матики СТО и ОТО А. Эйнштейна, поэтому требуется дополнительное разъясне-

ние. Постулат Эйнштейна о постоянстве скорости света в вакууме остается неиз-

менным. Но, если участок одной из сторон 23-mn -вакуумной протяженности 

движется как целое со скоростью vx [смотрите (24.12) – (24.15)], то для сторон-

него наблюдателя, находящегося на неподвижной РЛС (рис. 3.1), прямой луч 

света будет распространяться со скоростью 
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



     

(25.5) 

Это подобно тому, как неподвижный наблюдатель измеряет скорость рас-

пространения волн по движущейся относительно него поверхности реки. Такой 

наблюдатель обнаружит, что скорость распространения возмущений зависит от 

скорости течения реки, тогда как относительно самой воды скорость распростра-

нения возмущений остается неизменной, и зависит только от свойств самой воды 

(ее плотности, температуры, примесей и т. д.). 

Из выражений (25.3) следует, что в случае (24.12) – (24.15) скорость распро-

странения внешней стороны 23-mn -вакуумной протяженности (субконта) не мо-

жет превышать скорости света. При малых скоростях (vx << c) для стороннего 

наблюдателя скорость c’ оказывается несколько меньшей скорости света 

.'
cdt

xv
сс x  

Таким образом, для случая (24.12) – (24.15), несмотря на то, что интерпре-

тации математического аппарата АС и СТО отличаются, основные физические 

выводы остаются прежними. 

Однако для случая (24.8) – (24.11) дело обстоит по-другому. Рассмотрим 

данный вариант внутривакуумных процессов на примере движения субконта, 

описываемого метрикой (24.10) 

ds(-)2 = (1+ vx
2/с2)c2dt2– dx2 – dy2 – dz2.    (25.6) 

В этом случае введение обозначений 

,1'
2

2

c

v
сс x  zzyyxxtt  ,,,'    (25.7) 

приводит метрику (25.6) к инвариантному виду (25.4), но никаких ограничений 

на встречные скорости движения vx личины и изнанки субконта не возникает. 

Данное обстоятельство требует отдельного подробного рассмотрения, поскольку 
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оно допускает возможность организации сверхсветовых внутривакуумных кана-

лов связи. 

26. Инертные свойства слоев mn-вакуума 

Вернемся к рассмотрению метрик (24.2) и (24.3) 

ds(+ – – –)2 = ds(-)2 = c2dt2 – dx2 – dy2 – dz2,    (26.1) 

ds(– + + +)2 = ds(+)2 = – c2dt2 + dx2 + dy2 + dz2.   (26.2) 

Вынесем величину с2dt2 в правых частях этих метрик за скобки 

,)1(
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222)(
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v
dtcds 

      
(26.3)
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(26.4)

 

где v = (dx2 +dy2 +dz2)1/2/dt = dl/dt – 3-мерная скорость. 

Извлечем корень из двух сторон получившихся выражений (26.3) и (26.4). В 

результате, согласно условным обозначениям (24.4) – (24.7), получим 

2

2
)( 1 '
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v
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 – 
для личины субконта;    (26.5)
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- для изнанки субконта;    (26.6) 
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- для личины антисубконта;   (26.7) 

2

2
)( 1'

c

v
icdtds 

 – для изнанки антисубконта.   (26.8) 

Для примера рассмотрим 4-мерный вектор скорости (4-скорости) личины 

субконта [12] 

ui
(-) = dxi /ds(-)’.     (26.9) 

Подставляя (26.5) в (26.9), получим компоненты 4-скорости [12] 
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Пусть личина субконта двигается только в направлении оси х, тогда ее 4-

скорость имеет компоненты 
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Определим теперь 4-ускорение личины субконта 
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и рассмотрим только его х-составляющую 
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где величина )(
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имеет размерность х-компоненты 3-мерного ускорения. 

В левой части (26.14) выполним операцию дифференцирования 
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и введем обозначение 

dvx/dt = аx
(-)'.     (26.16) 

При этом выражение (26.15) принимает вид 
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где ax
(-) – актуальное ускорение участка личины субконта, учитывающее ее инерт-

ные свойства; 

аx
(-)' – идеальное ускорение того же участка личины субконта без учета инертных 

свойств. 

Представим выражение (26.16) в следующем виде 

')()()(   xxx aa  ,      (26.18) 

где 







































2

3

2

2
2

2

2

2

)(

11

1

c

v
c

v

c

v
x

x

x

x      (26.19) 

– безразмерный коэффициент инертности, связывающий актуальное и иде-

альное ускорения изучаемого локального участка личины субконта, и показыва-

ющий как изменяется инертность (т.е. сопротивляемость изменению состояния 

движения) этого участка при изменении скорости его движения. 

Из выражения (26.19) следует, что при vх = 0 коэффициент инертности х
(-)

 = 

1 и ')()(   xx aa . Это означает, что участок личины субконта не оказывает никакого 

сопротивления началу его движения. При приближении vх к скорости света с ко-

эффициент инертности х
(-) стремится к бесконечности, при этом дальнейшее 

ускорение личины субконта становится невозможным. 

Выражение (26.18) является безмассовым аналогом второго закона Ньютона 

Fx = max,      (26.20) 

где Fx – компонента вектора силы; m – масса тела; ax – компонента его идеаль-

ного ускорения. 

Сравнивая (26.18) и (26.20), обнаруживаем, что в mn -вакуумной динамике 

безмассовый коэффициент инертности х
(-) локального участка личины субконта 



Scientific Cooperation Center "Interactive plus" 
 

91 

Content is licensed under the Creative Commons Attribution 4.0 license (CC-BY 4.0) 

является аналогом плотности инертной массы сплошной среды в пост-ньютонов-

ской физике. 

Последовательной подстановкой интервалов (26.6) – (26.8) в выражение 

(26.9) аналогично могут быть получены коэффициенты инертности х
(-), х

(+), 

х
(+) для трех остальных аффинных слоев 23-mn-вакуумной протяженности. 

Общий коэффициент инертности локального участка 23-mn -вакуумной протя-

женности является функцией от всех четырех коэффициентов инертности 

х
(±) = f (х

(-), х
(-), х

(+), х
(+) ).    (26.20) 

Вид этой функции будет определен в последующих статьях при изложении 

mn – вакуумной динамики. 

27. Кинематика разрыва локального участка «вакуума» 

Во многой мудрости много печали; и кто умножает познание, умножает 

скорбь. 

Екклесиаст (Библия, стр. 666). 

Светогеометрия «вакуума» открывает возможности для развития «нулевых» 

(вакуумных) технологий. Математический аппарат Алгебры сигнатур (Алсигна) 

позволяет спрогнозировать ряд вакуумных эффектов, которые в принципе не мо-

гут быть предсказаны современной односторонней физикой [6; 7]. 

В этой статье рассмотрим только кинематические аспекты возможности 

«разрыва» локального участка «вакуума». 

Проинтегрируем выражение (26.14) [13]: 
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Интегрируя (27.1) еще раз, и полагая x0 = 0 при t = 0, имеем следующее из-

менение расстояния вдоль оси x при ускоренном движении личины субконта: 
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Пусть исходное (т.е. неподвижное) состояние локального участка субконта 

задается интервалом (24.2) 

222222)( zdydxdtdcds 
.    (27.2) 

Равноускоренное движение данного участка вдоль оси х формально зада-

ется преобразованием координат [11]: 
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Дифференцируя координаты (27.3), и подставляя результаты 

дифференцирования в (27.2), получим метрику [11] 
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   (27.4) 

описывающую равноускоренное движение локального участка субконта 

(т.е. внешней стороны 23-mn-вакуумной протяженности) в направлении оси x. 

Если в этой же области субконта создать дополнительное течение с равно-

замедленным движением, т.е. с отрицательным ускорением 
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то, проделывая математические выкладки аналогичные (27.1) – (27.4) получим 

метрику 
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При этом среднее метрико-динамическое состояние локального участка 

субконта будет характеризоваться усредненной метрикой 
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с сигнатурой (+ – – –). Откуда видим, что при 

,1
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
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taх  или |ах|t = c или |ах| = c /t,    (27.8) 

первое и второе слагаемые в усредненной метрике (27.7) обращаются в беско-

нечность. Данную сингулярность можно интерпретировать как «разрыв» иссле-

дуемого участка субконта (т.е. внешней стороны 23-mn-вакуумной протяженно-

сти). 

«Разрыв» субконта – это неполное действие. Для полного «разрыва» локаль-

ного участка 23-mn-вакуумной протяженности необходимо «порвать» и ее внут-

реннюю сторону, описываемую метрикой (26.2) с сигнатурой (– + + +). Для этого 

необходимо в антисубконте той же области mn-вакуума создать аналогичные 

равноускоренные и равнозамедленные течения, чтобы его среднее состояние 

определялось усредненной метрикой 

 

,
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


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








 

  (27.9) 

с сигнатурой (– + + +), которая «рвется» при тех же условиях 

,1
4

44


c

taх  или |ах|t = c, или |ах| = c /t.    (27.10) 

Усреднение метрик (27.7) и (27.9) приводит к выполнению вакуумного 

условия 
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0)( 2)(2)(
2

12   dsdsds ,    (27.11) 

которое в данной ситуации эквивалентно третьему закону Ньютона: – «действие 

равно противодействию» 

Fx
(+) – Fx

(-) = max
(+) – max

(-) = ax
(+) – ax

(-).    (27.12) 

То есть процесс «разрыва» локального участка «вакуума» аналогичен раз-

рыву обычного (атомистического) твердого тела, к которому с двух его сторон 

приложены достаточно большие равные силы, точнее ускорения. 

Не исключено, что описанные выше условия «разрыва» «вакуума» склады-

ваются при столкновении элементарных частиц, разогнанных на ускорителе. 

Сильное соударение частиц приводит к возникновению паутины вакуумных 

«трещин», при этом замкнувшиеся трещины разлетаются в виде множества но-

вых «частиц» и «античастиц» (подобно осколкам разбитого стекла). 

Выводы 

Светогеометрию Алгебры сигнатур следовало бы назвать «пустометрией», 

поскольку исследуется «вакуум» («пустота»), а не Гея (др.-греч. Γῆ, Γᾶ, Γαῖα – 

Земля). Однако вся развиваемая здесь теория полностью пригодна и для иссле-

дования сплошных атомистических сред (таких, как вода или твердые тела), 

только данные среды следует зондировать не лучами света, а лучами звуковых 

волн, которые распространяются в этих средах с постоянной скоростью. 

Перечислим основные отличия Алгебры сигнатур (АС) (предлагаемой тео-

рии) от ОТО А. Эйнштейна. 

1. ОТО рассматривает только одну метрику, например с сигнатурой (+ – – –

) (7.5) 

ds(+ – – –)2 = gij
(-)dxidx j 

и следовательно одностороннее 4-мерное пространство, что в ряде случаев при-

водит к парадоксам. Тогда как АС учитывает совокупность 16-и всевозможных 

метрик (20.4) 
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ds(+ – – –)2 ds(+ + + +)2 ds(– –  +)2 ds(+ – – +)2 

ds(– – + –)2 ds(+ + – –)2 ds(– + – –)2 ds(+ – + –)2 

ds(– + + +)2 ds(– – – – )2 ds(+ + + –)2 ds (– + + –)2 

ds(+ + – +)2 ds(– – + +)2 ds(+ – + +)2 ds(– + – +)2, 

и следовательно полную совокупность 16-и типов 4-мерных пространств со 

всеми возможными сигнатурами (или топологиями) (21.4) 

 (+ + + +) 

(– – – + ) 

(+ – – + ) 

(– – + – ) 

(+ + – – ) 

(– + – – ) 

(+ – + – ) 

(+ – – – )+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(– – – –) = 0 

(+ + + –) = 0 

(– + + –) = 0 

(+ + – +) = 0 

(– – + +) = 0 

(+ – + +) = 0 

(– + – +) = 0 

(– + + +)+ = 0 

 

 

 

Данный подход позволяет наметить пути решения ряда задач, которые ранее 

не поддавались решению. Например, предлагаются метрико-динамические мо-

дели всех элементарных частиц, входящих в состав Стандартной модели [3–5]; 

возникает возможность решения проблемы барионной асимметрии материи; 

предлагается технология «разрыва» локального участка «вакуума» [7], обнару-

живаются возможности теоретического обоснования использования внутриваку-

умных течений для перемещения в пространстве и получения энергии из «ваку-

ума», и многое другое. 

2. В рамках АС время t не является атрибутом изучаемого локального 

участка «вакуума», оно характеризует способность наблюдателя упорядочить 

ощущение длительности. Поэтому, в отличие от ОТО, в АС промежуток времени 

dt не изменяется при искривлении «вакуума». Вместо изменения течения вре-

мени, на искривленном участке «вакуума» предлагается рассматривать внутри-

вакуумные течения (т.е. движения слоев «вакуума»). В п. 24 показано, что нуле-

вые компоненты метрических тензоров (24.1) могут быть связаны с ламинар-

ными и турбулентными составляющими движения внутривакуумных слоев. Та-

кой подход позволят относиться к 3-мерному «вакууму» как к сплошной много-

слойной упруго-пластической среде. 
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3. В рамках Алсигны имеет место не один, а четыре «вакуума» с правилами 

умножения знаков (10.6) – (10.9). Позже будет показано, что коммутативные и 

антикоммутативные «вакуумы» и «антивакуумы» позволяют обеспечить ста-

бильность истинной пустоты. 

4. Вспомогательные математические пространства Алсигны суперсиммет-

ричны, т.к. каждая их точка характеризуется как коммутативными, так и анти-

коммутативными числами. 

Итак, аксиоматика светогеометрии «вакуума» практически полностью сов-

падает с аксиоматикой СТО и ОТО А. Эйнштейна (локальность, причинность, 

Лоренц инвариантность, общековариантность уравнений, экстремальность дей-

ствия и т. д.), за исключением: 

 иного отношения ко времени; 

 иной интерпретации нулевых компонент метрического тензора g00, g0i; 

 учета всех 16-и (точнее 64) возможных сигнатур; 

 суперсимметричности пространств событий. 

Формальный математический аппарат Алгебры сигнатур (дифференциаль-

ная, мультисигнатурная, поперечно и продольно расслоённая, суперсимметрич-

ная и бесконечномерная светогеометрия) все более и более усложнятся по мере 

приближения к изучению свойств пустой бесконечности. Но изначально преду-

смотрены алгоритмы свертывания множества дополнительных измерений и то-

пологических наслоений до описания метрико-динамических свойств 3-мерного 

объема «вакуума», который может изменяться в течение времени стороннего 

наблюдателя. 

Выражаю искреннюю благодарность Дэвиду Риду (David Reid) за оказание 

помощи по редактированию и творческому переводу данной статьи на англий-

ский язык. Ряд идей, обсуждаемых в данной статье, были высказаны в беседах 

с С.Г. Прохоровым и В.П. Храмихиным. Также, автор признателен к.ф.-
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м.н. В.А. Лукьянову, Т.С. Морозовой и С.В. Пржигодскому за ценные замечания 

и корректировку рукописи данной статьи. 

Указатель номеров определений новых терминов 

Определение нового термина можно найти в тексте статьи под соловеющим 

номером: 

Алгебра сигнатур (Алсигна) – определение №11.2. 

Алсигна – определение №11.2. 

Антисубконт – определение №7.5. 

База – определение №8.1. 

«Вакуум» – определение №1.1, №12.5. 

Вакуумное условие – определение №12.4. 

Вакуумный баланс – определение №12.3. 

Внешняя сторона 23-mn -вакуумной протяженности (субконт) – опреде-

ление №7.2. 

Внутренняя сторона 23-mn -вакуумной протяженности (антисубконт) – 

определение №7.3. 

Изнанка антисубконта – определение №24.4. 

Изнанка субконта – определение №24.2. 

Истинный нуль – определение №4.1. 

И-Цзин аналогия – определение №8.3. 

Личина антисубконта – определение №24.3. 

Личина субконта – определение №24.1. 

Луч света – определение №2.1. 

Ньютоновский вакуум («вакуум») – определение №1.1. 

Ортогональный 3-базис – определение №6.1. 

Поперечное расслоение «вакуума» – определение №16.1. 

Поперечно «расщепленным нуль» – определение №12.1. 

Продольное расслоение «вакуума» – определение №2.3. 
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Продольно «расщепленных ноль» – определение №12.2. 

Ранжир – определение №10.2. 

Сигнатура – определение №10.1. 

Стигнатура – определение №8.2. 

Субконт – определение №7.4. 

Шахматная аналогия – определение №11.1. 

k-жгут – определение №22.1. 

mn-вакуум – определение №2.2. 

mn-вакуумное условие – определение №12.4. 

mn-вакуумный баланс – определение №12.3. 

2k-mn-вакуумная протяженность – определение №7.1. 
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