
Центр научного сотрудничества «Интерактив плюс»

0 www.interactive-plus.ru

Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0)

Караев Александр Дмитриевич

магистрант

Караева Дария Александровна

магистрант

ФГАОУ ВО «Московский физико-технический

институт (государственный университет)»

г. Долгопрудный, Московская область

ПРИМЕНЕНИЕ ГЕНЕТИЧЕСКОГО

АЛГОРИТМА ДЛЯ ИМИТАЦИИ

ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В ИГРЕ

Аннотация: в данной статье рассмотрен пример использования нейронной

сети для создания интеллектуального бота для игры 2048. Использована моди-

фицированная версия генетического алгоритма, подобраны оптимальные пара-

метры для достижения высоких результатов. Показано, что написанная про-

грамма может достигать лучших результатов, нежели среднестатистиче-

ский игрок.

Ключевые слова: интеллектуальный бот, игры, нейронные сети, генетиче-

ский алгоритм, машинное обучение.

В последнее время широкую популярность приобрели задачи искусствен-

ного интеллекта в играх (см., например, [1]). Причем нередко возникают ситуа-

ции, когда обучение с учителем – наиболее распространенная модель – неприме-

нимо по тем или иным причинам: игра ведётся пошагово, причем нельзя одно-

значно сказать, был ли конкретный шаг «правильным» или нет. Также, во многих

играх есть элемент случайности, в связи с которым бессмысленно тренировать

модель на фиксированных входных данных. И наконец, элемент «пошаговости»

превращает попытки выиграть в перебор по пространству возможных ходов, ко-

торое может являться большим деревом.

https://creativecommons.org/licenses/by/4.0/

Scientific Cooperation Center "Interactive plus"

1

Content is licensed under the Creative Commons Attribution 4.0 license (CC-BY 4.0)

В данной работе рассматривается случай, объединяющий в себе все выше-

описанные проблемы, а также методика, позволяющая успешно обучить ИИ в

такой ситуации.

В качестве модели была выбрана модификация известной компьютерной

игры 2048. Опишем кратко правила данной игры.

Имеется поле размера 4х4, каждая клетка которого либо пуста, либо содер-

жит плитки со значением 2𝑁 , 𝑁 > 0. В начале игры поле содержит 2 плитки но-

минала «2» или «4» каждая. Будем называть ходом нажатие одной из стрелок,

после которого все плитки сдвигаются в соответствии с указанным направле-

нием. Если при сдвиге две плитки одного номинала «налетают» друг на друга,

они слипаются в одну с номиналом, равным сумме номиналов и к суммарному

счёту прибавляется это значение. После каждого хода в свободном месте поля

появляется плитка с номиналом 2 (вероятность 90.9%) или с номиналом 4 (веро-

ятность 9.1%). Игра заканчивается, если игрок не может сделать ход. В ориги-

нальной версии игра выиграна, если игрок получает плитку 2048, в нашей моди-

фикации – игра продолжается до полного проигрыша.

Данная игра, с точки зрения исследования, хороша тем, что содержит отно-

сительно малое количество параметров (16 – текущие номиналы плиток, теку-

щий счёт не рассматривался как параметр) и всего 4 параметра, влияющих на

очередной ход – вероятность хода в одном из четырёх направлений.

В качестве архитектуры модели выступает нейронная сеть с одним скрытым

слоем. Количество нейронов в каждом слое определялось параметрами модели:

входной слой имел столько нейронов, сколько параметров имела модель и вы-

ходной – сколько требовалось для определения хода. Скрытый слой содержал

фиксированное количество параметров. В качестве передаточной функции был

выбран гиперболический тангенс.

Итоговая нейронная сеть работала по следующей схеме:

1. Получили вектор размерности 𝑁 (количество параметров модели).

2. Подействовали на него матрицей, определяющей переход с входного слоя

на скрытый.

Центр научного сотрудничества «Интерактив плюс»

2 www.interactive-plus.ru

Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0)

3. Подействовали гиперболическим тангенсом на полученный вектор.

4. Повторили пункты 2–3 для последующего слоя.

5. Получили 𝑀 параметров, определяющих следующий ход модели.

Обычно для обучения нейронной сети применяют алгоритм обратного рас-

пространения ошибки (см [3]), но он работает только в задаче обучения с учите-

лем. В нашей же ситуации, мы не можем указать нейронной сети на её ошибки,

так как в данной игре нет понятия «правильный» ход, поэтому back-propagation

не применим.

В связи с этим было решено использовать генетический алгоритм, описан-

ный, например, в [2; 6] – эвристический алгоритм поиска, используемый в зада-

чах оптимизации (например, [4]). Грубо говоря, это «умный» перебор всех допу-

стимых значений параметров с целью получения максимального положитель-

ного результата.

Основа генетического алгоритма (см [5]) – возможность формализовать за-

дачу таким образом, чтобы её решение могло быть закодировано генотипом –

вектором генов. Генами в данной работе выступали параметры нейронной сети

(значения элементов матриц).

Принцип работы алгоритма состоит в следующем: задаётся функция при-

способленности (fitness function), которая определяет, насколько «хорош» дан-

ный генотип, а также берётся набор генотипов с произвольными начальными

данными – популяция. Далее в цикле, пока не будет достигнут оптимальный ре-

зультат последовательно производятся следующие операции:

1. Размножение (скрещивание) – генерация новых генотипов на основе ста-

рых. Берётся два (обычно) генотипа-родителя, на их основе генерируется новый

генотип – ребёнок и добавляется к исходному набору.

2. Мутирование – произвольные биты (значения) некоторых генотипов из-

меняются на некоторую величину с небольшой вероятностью.

3. Вычисляется приспособленность каждого генотипа.

4. Селекция – формирование нового поколения на основе приспособленно-

сти генотипов старого поколения.

Scientific Cooperation Center "Interactive plus"

3

Content is licensed under the Creative Commons Attribution 4.0 license (CC-BY 4.0)

Для обучения бота игре в 2048 использовалась нейронная сеть с размером

входного слоя в 16 параметров, скрытого – 5 параметров и выходного – 4.

В качестве значений выступали соответственно матрицы 16*5 и 5*4, что в

сумме даёт 100 параметров архитектуры. Один из вариантов кодирования каж-

дого параметра – использование чисел с плавающей запятой. Однако, большин-

ство языков программирования работают с числами размера 32/64 бита, что яв-

ляется лишними накладными расходами. Также, для применения генетического

алгоритма нужно уметь оперировать с битами, а формат чисел с плавающей за-

пятой подразумевает, что различные биты отвечают совершенно за разные свой-

ства числа (мантисса, экспонента, знак). В связи с этим было решено протести-

ровать программу на собственном формате чисел произвольной битности – Uni-

formFloat<N>.

Данный формат хранит число с плавающей запятой в знаковом типе размера

𝑁 бит, а его значение – это значение знакового типа, деленное на 2𝑁-1 – макси-

мально допустимое значение данного типа. В итоге, UniformFloat<N> может хра-

нить 2𝑁 различных рациональных чисел, равномерно распределенных в интер-

вале от –1 до 1 (нормировка на единицу по умолчанию). Отметим, что данный

формат хорошо показал себя в тестах для некоторых значений 𝑁, что будет по-

казано ниже.

В дальнейшем, будем называть агентом генотип и нейронную сеть, ему со-

ответствующую, а набор агентов – поколением (или популяцией).

Итоговый геном имел 100 ∗ 𝑁 бит данных. Реализация генетического алго-

ритма была упрощена для ускорения его работы. А именно: размножение и се-

лекция были объединены в одну стадию отсеивания – после просчёта приспособ-

ленности один наихудший геном заменялся на копию наилучшего. Мутирование

представляло собой смену значения одного произвольного бита с некоторой ве-

роятностью. В качестве функции приспособленности выступает средний резуль-

тат, который набрал агент за одну стадию тестирования.

Тестирование проходило следующим образом.

Центр научного сотрудничества «Интерактив плюс»

4 www.interactive-plus.ru

Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0)

Каждый агент играл фиксированное количество игр, а средний результат по

играм являлся показателем успешности. Усреднение требовалось для более гра-

мотной оценки и для предотвращения «случайных» успехов.

Перед очередным ходом на вход нейронной сети подавалось текущее состо-

яние поля, на выходе получались 4 числа – «вес» хода в каждую сторону.

В соответствии с максимальным весом производилась попытка походить.

Если ход невозможен, брался следующий по величине вес и повторялись те же

действия.

Для каждого генотипа игра заканчивалась в том случае, если он не может

походить или он превысил искусственное ограничение на количество шагов, не-

обходимое для более плавного обучения: агенты учились сначала на небольших

по длительности играх, затем на более сложных. Заметим, что ограничение зави-

сит от номера поколения, и, как правило, растет вместе с ним.

После того, как всё поколение отыграло некоторое количество игр, произ-

водилось отсеивание и мутация.

Данный алгоритм повторялся фиксированное количество раз (от 5000 до

20000), после чего оценивалась эффективность обучения.

Итоговая реализация тестировалась при размере популяции в 100 особей,

различных размерах скрытого слоя сети, а также вероятности мутации одного

случайного бита каждого агента на каждой итерации. Кроме того, были рассмот-

рены следующие типы для кодирования значений нейронной сети: Uniform-

Float<8>, UniformFloat<16> и float (32 bit). Дополнительно было проведено те-

стирование для случая линейной зависимости ограничения количества шагов от

номера популяции и для зависимости вида квадратного корня.

Также, для сравнения с игрой реальных людей был разработан игровой мо-

дуль для записи статистики и добавлены результаты двух игроков.

В качестве статистики популяции на каждой итерации собиралась следую-

щая информация:

 успех лучшего агента по популяции;

 средний успех по популяции;

Scientific Cooperation Center "Interactive plus"

5

Content is licensed under the Creative Commons Attribution 4.0 license (CC-BY 4.0)

 максимально возможный успех при заданном ограничении количества

шагов.

Перейдем к результатам тестирования. Напомним, что с ростом популяции

росло количество допустимых шагов, поэтому на ранних стадиях жизни почти

все агенты не успевали проиграть за фиксированное количество шагов.

Также, результаты игроков Player 1, Player 2 начиная с некоторой популя-

ции становятся константой – так как они проиграли за фиксированное количе-

ство шагов и свой счёт улучшить с ростом популяции не могут (их результат

статичен).

В дальнейшем, под возрастом популяции будет подразумеваться количе-

ство прошедших селекций и отборов генетического алгоритма.

На рисунке 1 представлены результаты тестирования для некоторых пара-

метров. Из графика можно сделать вывод, что поставленная в работе цель до-

стигнута – «бот» успешно обошёл среднестатистических игроков в 1.5 раза, при-

чем результат его обучения вышел на некую асимптотику.

Рис. 1. Зависимость успеха от возраста популяции.

Использование UniformFloat<8>, вероятность мутации 0.03

Если проанализировать дальнейшие графики, будет видно, что при коррек-

тировке параметров алгоритма можно получить более высокие результаты, од-

нако это выходит за рамки данной работы.

Центр научного сотрудничества «Интерактив плюс»

6 www.interactive-plus.ru

Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0)

Для проверки эффективности использования введенного типа

UniformFloat<N> проводилось сравнение результатов тестирования для указан-

ного типа и стандартного float. Вопреки ожиданиям, использование типа float

показало себя не хуже введенного нами, что отражено на рисунке 2. Несмотря на

то, что смена отдельных бит в float может привести к бесконечности или NaN,

можно предположить, что популяция быстро отсеивала такие результаты.

Тем не менее, введенный тип имеет в 4 раза меньший размер, чем стандарт-

ный float, что делает его значительно более эффективным по памяти при доста-

точно хороших результатах игры.

Рис. 2. Зависимость успеха от возраста популяции.

Сравнение результатов float и UniformFloat<8>

при вероятности мутации 0.03

Результаты сравнения UniformFloat<8> и UniformFloat<16> представлены

на рисунке 3. 8-мибитный тип оказался более успешен, однако, вероятно, его 16-

тибитному аналогу просто не хватило времени, чтобы мутировать. Также, асимп-

тотически, расширенная версия имеет большую вариативность и теоретически

может показать более высокие результаты при более длительном обучении.

Scientific Cooperation Center "Interactive plus"

7

Content is licensed under the Creative Commons Attribution 4.0 license (CC-BY 4.0)

Рис. 3. Зависимость успеха от возраста популяции.

Сравнение результатов UniformFloat<8> и UniformFloat<16>

с вероятностью мутации 0.01

Отметим также, что при увеличении вероятности мутации скорость обуче-

ния возрастает, что отражено на рисунке 4. Однако, при выборе больших значе-

ний обучение может стать крайне нестабильным, что делает более разумным вы-

бор небольших значений.

Рис. 4. Зависимость успеха от возраста популяции.

Сравнение результатов UniformFloat<8>

с различной вероятностью мутации

Центр научного сотрудничества «Интерактив плюс»

8 www.interactive-plus.ru

Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0)

Наконец, проводилось сравнение результатов для разных размеров скры-

того слоя сети. По результатам, представленным на рисунке 5 можно сделать вы-

вод, что сеть большего размера учится дольше, но в теории она позже выйдет на

асимптотику, так как имеет большую вариативность.

Рис. 5. Зависимость успеха от возраста популяции

для разных размеров скрытого слоя.

Вероятность мутации – 0.01

В заключение, отметим, что написанный нами интеллектуальный бот пока-

зывает высокие результаты, превосходящие среднестатистических игроков. Из

полученных данных вытекает, что при достаточно длительном обучении и под-

боре параметров алгоритма можно добиться высокой эффективности про-

граммы.

Список литературы

1. Buckland M. Ai Techniques for Game Programmers / M.Buckland. – Boston:

Premier Press, 2002.

2. Goldberg D. The Design of Innovation: Lessons from and for Competent Ge-

netic Algorithms / D. Goldberg. – Norwell, MA: Kluwer Academic Publishers, 2002.

3. Rumelhart D.E. Learning representations by back-propagating errors / D.E. Ru-

melhart, G.E. Hinton, R.J. Williams // Nature. – 1986. – №323 (6088). – P. 533–536.

4. Schmitt L.M. Theory of Genetic Algorithms II: models for genetic operators

over the string-tensor representation of populations and convergence to global optima

Scientific Cooperation Center "Interactive plus"

9

Content is licensed under the Creative Commons Attribution 4.0 license (CC-BY 4.0)

for arbitrary fitness function under scaling / L.M. Schmitt // Theoretical Computer Sci-

ence. – 2004. – №310. – P. 181–231.

5. Генетический алгоритм // Wikipedia URL: https://ru.wikipe-

dia.org/wiki/Генетический_алгоритм (дата обращения: 25.08.2017).

6. Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетиче-

ские алгоритмы и нечеткие системы- 2-е изд. – М: Горячая линия-Телеком,

2008. – С. 452.

