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Аннотация: в данной статье рассмотрен пример использования нейронной 

сети для создания интеллектуального бота для игры 2048. Использована моди-

фицированная версия генетического алгоритма, подобраны оптимальные пара-

метры для достижения высоких результатов. Показано, что написанная про-

грамма может достигать лучших результатов, нежели среднестатистиче-

ский игрок. 
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В последнее время широкую популярность приобрели задачи искусствен-

ного интеллекта в играх (см., например, [1]). Причем нередко возникают ситуа-

ции, когда обучение с учителем – наиболее распространенная модель – неприме-

нимо по тем или иным причинам: игра ведётся пошагово, причем нельзя одно-

значно сказать, был ли конкретный шаг «правильным» или нет. Также, во многих 

играх есть элемент случайности, в связи с которым бессмысленно тренировать 

модель на фиксированных входных данных. И наконец, элемент «пошаговости» 

превращает попытки выиграть в перебор по пространству возможных ходов, ко-

торое может являться большим деревом. 

https://creativecommons.org/licenses/by/4.0/
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В данной работе рассматривается случай, объединяющий в себе все выше-

описанные проблемы, а также методика, позволяющая успешно обучить ИИ в 

такой ситуации. 

В качестве модели была выбрана модификация известной компьютерной 

игры 2048. Опишем кратко правила данной игры. 

Имеется поле размера 4х4, каждая клетка которого либо пуста, либо содер-

жит плитки со значением 2𝑁 , 𝑁 > 0. В начале игры поле содержит 2 плитки но-

минала «2» или «4» каждая. Будем называть ходом нажатие одной из стрелок, 

после которого все плитки сдвигаются в соответствии с указанным направле-

нием. Если при сдвиге две плитки одного номинала «налетают» друг на друга, 

они слипаются в одну с номиналом, равным сумме номиналов и к суммарному 

счёту прибавляется это значение. После каждого хода в свободном месте поля 

появляется плитка с номиналом 2 (вероятность 90.9%) или с номиналом 4 (веро-

ятность 9.1%). Игра заканчивается, если игрок не может сделать ход. В ориги-

нальной версии игра выиграна, если игрок получает плитку 2048, в нашей моди-

фикации – игра продолжается до полного проигрыша. 

Данная игра, с точки зрения исследования, хороша тем, что содержит отно-

сительно малое количество параметров (16 – текущие номиналы плиток, теку-

щий счёт не рассматривался как параметр) и всего 4 параметра, влияющих на 

очередной ход – вероятность хода в одном из четырёх направлений. 

В качестве архитектуры модели выступает нейронная сеть с одним скрытым 

слоем. Количество нейронов в каждом слое определялось параметрами модели: 

входной слой имел столько нейронов, сколько параметров имела модель и вы-

ходной – сколько требовалось для определения хода. Скрытый слой содержал 

фиксированное количество параметров. В качестве передаточной функции был 

выбран гиперболический тангенс. 

Итоговая нейронная сеть работала по следующей схеме: 

1. Получили вектор размерности 𝑁 (количество параметров модели). 

2. Подействовали на него матрицей, определяющей переход с входного слоя 

на скрытый. 
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3. Подействовали гиперболическим тангенсом на полученный вектор. 

4. Повторили пункты 2–3 для последующего слоя. 

5. Получили 𝑀 параметров, определяющих следующий ход модели. 

Обычно для обучения нейронной сети применяют алгоритм обратного рас-

пространения ошибки (см [3]), но он работает только в задаче обучения с учите-

лем. В нашей же ситуации, мы не можем указать нейронной сети на её ошибки, 

так как в данной игре нет понятия «правильный» ход, поэтому back-propagation 

не применим. 

В связи с этим было решено использовать генетический алгоритм, описан-

ный, например, в [2; 6] – эвристический алгоритм поиска, используемый в зада-

чах оптимизации (например, [4]). Грубо говоря, это «умный» перебор всех допу-

стимых значений параметров с целью получения максимального положитель-

ного результата. 

Основа генетического алгоритма (см [5]) – возможность формализовать за-

дачу таким образом, чтобы её решение могло быть закодировано генотипом – 

вектором генов. Генами в данной работе выступали параметры нейронной сети 

(значения элементов матриц). 

Принцип работы алгоритма состоит в следующем: задаётся функция при-

способленности (fitness function), которая определяет, насколько «хорош» дан-

ный генотип, а также берётся набор генотипов с произвольными начальными 

данными – популяция. Далее в цикле, пока не будет достигнут оптимальный ре-

зультат последовательно производятся следующие операции: 

1. Размножение (скрещивание) – генерация новых генотипов на основе ста-

рых. Берётся два (обычно) генотипа-родителя, на их основе генерируется новый 

генотип – ребёнок и добавляется к исходному набору. 

2. Мутирование – произвольные биты (значения) некоторых генотипов из-

меняются на некоторую величину с небольшой вероятностью. 

3. Вычисляется приспособленность каждого генотипа. 

4. Селекция – формирование нового поколения на основе приспособленно-

сти генотипов старого поколения. 
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Для обучения бота игре в 2048 использовалась нейронная сеть с размером 

входного слоя в 16 параметров, скрытого – 5 параметров и выходного – 4. 

В качестве значений выступали соответственно матрицы 16*5 и 5*4, что в 

сумме даёт 100 параметров архитектуры. Один из вариантов кодирования каж-

дого параметра – использование чисел с плавающей запятой. Однако, большин-

ство языков программирования работают с числами размера 32/64 бита, что яв-

ляется лишними накладными расходами. Также, для применения генетического 

алгоритма нужно уметь оперировать с битами, а формат чисел с плавающей за-

пятой подразумевает, что различные биты отвечают совершенно за разные свой-

ства числа (мантисса, экспонента, знак). В связи с этим было решено протести-

ровать программу на собственном формате чисел произвольной битности – Uni-

formFloat<N>. 

Данный формат хранит число с плавающей запятой в знаковом типе размера 

𝑁 бит, а его значение – это значение знакового типа, деленное на 2𝑁-1 – макси-

мально допустимое значение данного типа. В итоге, UniformFloat<N> может хра-

нить 2𝑁 различных рациональных чисел, равномерно распределенных в интер-

вале от –1 до 1 (нормировка на единицу по умолчанию). Отметим, что данный 

формат хорошо показал себя в тестах для некоторых значений 𝑁, что будет по-

казано ниже. 

В дальнейшем, будем называть агентом генотип и нейронную сеть, ему со-

ответствующую, а набор агентов – поколением (или популяцией). 

Итоговый геном имел 100 ∗ 𝑁 бит данных. Реализация генетического алго-

ритма была упрощена для ускорения его работы. А именно: размножение и се-

лекция были объединены в одну стадию отсеивания – после просчёта приспособ-

ленности один наихудший геном заменялся на копию наилучшего. Мутирование 

представляло собой смену значения одного произвольного бита с некоторой ве-

роятностью. В качестве функции приспособленности выступает средний резуль-

тат, который набрал агент за одну стадию тестирования. 

Тестирование проходило следующим образом. 
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Каждый агент играл фиксированное количество игр, а средний результат по 

играм являлся показателем успешности. Усреднение требовалось для более гра-

мотной оценки и для предотвращения «случайных» успехов. 

Перед очередным ходом на вход нейронной сети подавалось текущее состо-

яние поля, на выходе получались 4 числа – «вес» хода в каждую сторону. 

В соответствии с максимальным весом производилась попытка походить. 

Если ход невозможен, брался следующий по величине вес и повторялись те же 

действия. 

Для каждого генотипа игра заканчивалась в том случае, если он не может 

походить или он превысил искусственное ограничение на количество шагов, не-

обходимое для более плавного обучения: агенты учились сначала на небольших 

по длительности играх, затем на более сложных. Заметим, что ограничение зави-

сит от номера поколения, и, как правило, растет вместе с ним. 

После того, как всё поколение отыграло некоторое количество игр, произ-

водилось отсеивание и мутация. 

Данный алгоритм повторялся фиксированное количество раз (от 5000 до 

20000), после чего оценивалась эффективность обучения. 

Итоговая реализация тестировалась при размере популяции в 100 особей, 

различных размерах скрытого слоя сети, а также вероятности мутации одного 

случайного бита каждого агента на каждой итерации. Кроме того, были рассмот-

рены следующие типы для кодирования значений нейронной сети: Uniform-

Float<8>, UniformFloat<16> и float (32 bit). Дополнительно было проведено те-

стирование для случая линейной зависимости ограничения количества шагов от 

номера популяции и для зависимости вида квадратного корня. 

Также, для сравнения с игрой реальных людей был разработан игровой мо-

дуль для записи статистики и добавлены результаты двух игроков. 

В качестве статистики популяции на каждой итерации собиралась следую-

щая информация: 

 успех лучшего агента по популяции; 

 средний успех по популяции; 
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 максимально возможный успех при заданном ограничении количества 

шагов. 

Перейдем к результатам тестирования. Напомним, что с ростом популяции 

росло количество допустимых шагов, поэтому на ранних стадиях жизни почти 

все агенты не успевали проиграть за фиксированное количество шагов. 

Также, результаты игроков Player 1, Player 2 начиная с некоторой популя-

ции становятся константой – так как они проиграли за фиксированное количе-

ство шагов и свой счёт улучшить с ростом популяции не могут (их результат 

статичен). 

В дальнейшем, под возрастом популяции будет подразумеваться количе-

ство прошедших селекций и отборов генетического алгоритма. 

На рисунке 1 представлены результаты тестирования для некоторых пара-

метров. Из графика можно сделать вывод, что поставленная в работе цель до-

стигнута – «бот» успешно обошёл среднестатистических игроков в 1.5 раза, при-

чем результат его обучения вышел на некую асимптотику. 

 

Рис. 1. Зависимость успеха от возраста популяции.  

Использование UniformFloat<8>, вероятность мутации 0.03 

 

Если проанализировать дальнейшие графики, будет видно, что при коррек-

тировке параметров алгоритма можно получить более высокие результаты, од-

нако это выходит за рамки данной работы. 



Центр научного сотрудничества «Интерактив плюс» 
 

6     www.interactive-plus.ru 

Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0) 

Для проверки эффективности использования введенного типа 

UniformFloat<N> проводилось сравнение результатов тестирования для указан-

ного типа и стандартного float. Вопреки ожиданиям, использование типа float 

показало себя не хуже введенного нами, что отражено на рисунке 2. Несмотря на 

то, что смена отдельных бит в float может привести к бесконечности или NaN, 

можно предположить, что популяция быстро отсеивала такие результаты. 

Тем не менее, введенный тип имеет в 4 раза меньший размер, чем стандарт-

ный float, что делает его значительно более эффективным по памяти при доста-

точно хороших результатах игры. 

 

Рис. 2. Зависимость успеха от возраста популяции.  

Сравнение результатов float и UniformFloat<8>  

при вероятности мутации 0.03 

 

Результаты сравнения UniformFloat<8> и UniformFloat<16> представлены 

на рисунке 3. 8-мибитный тип оказался более успешен, однако, вероятно, его 16-

тибитному аналогу просто не хватило времени, чтобы мутировать. Также, асимп-

тотически, расширенная версия имеет большую вариативность и теоретически 

может показать более высокие результаты при более длительном обучении. 
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Рис. 3. Зависимость успеха от возраста популяции.  

Сравнение результатов UniformFloat<8> и UniformFloat<16>  

с вероятностью мутации 0.01 

 

Отметим также, что при увеличении вероятности мутации скорость обуче-

ния возрастает, что отражено на рисунке 4. Однако, при выборе больших значе-

ний обучение может стать крайне нестабильным, что делает более разумным вы-

бор небольших значений. 

 

Рис. 4. Зависимость успеха от возраста популяции.  

Сравнение результатов UniformFloat<8>  

с различной вероятностью мутации 
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Наконец, проводилось сравнение результатов для разных размеров скры-

того слоя сети. По результатам, представленным на рисунке 5 можно сделать вы-

вод, что сеть большего размера учится дольше, но в теории она позже выйдет на 

асимптотику, так как имеет большую вариативность. 

 

Рис. 5. Зависимость успеха от возраста популяции  

для разных размеров скрытого слоя.  

Вероятность мутации – 0.01 

 

В заключение, отметим, что написанный нами интеллектуальный бот пока-

зывает высокие результаты, превосходящие среднестатистических игроков. Из 

полученных данных вытекает, что при достаточно длительном обучении и под-

боре параметров алгоритма можно добиться высокой эффективности про-

граммы. 
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