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ОСНОВНЫЕ УРАВНЕНИЯ НЕЛИНЕЙНОГО  

ДЕФОРМИРОВАНИЯ СТЕРЖНЕЙ 

Аннотация: нелинейная задача деформирования стержня при термомеха-

ническом нагружении. Рассматривается плоская задача, когда стержень де-

формируется в плоскости под действием механической нагрузки и неравномер-

ного температурного поля. Сформулированы основные дифференциальные 

уравнения для криволинейных стержней, из которых можно получить диффе-

ренциальные уравнения для прямых стержней, если туда поставить Ө0=0, р0 

стремиться к бесконечности. 
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Рассмотрим деформирование стержней с начальной кривизной. Обозначим 

радиус кривызнитермоупругой линии до и после деформации через 0 и а угол 

наклона касательной термоупругой линии к оси z до и после деформации через 

0 и  соответственно, перемещение вдоль оси z – через w, а вдоль оси y – через 

v. Очевидно, что w=w(l), v=v(l),=(l),=(l), где l-длина дуги деформированной 

термоупругой линии (сопутствующая координата), или w=w(l0), 

v=v(l0),=(l0), =(l0), где l0-длина дуги недеформированной термоупругой ли-

нии. Оси y, z выберем таким образом, чтобы плоскость yz совпадала с плоско-

стью изгиба [1]. 

Деформация элементарного отрезка АВ длиной dl0 определяется как 

0=(dl-dl0)/dl0      (1) 

откуда, длина после деформации dl того же элемента 

dl=dl0(1+0)       (2) 
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где dl = d, dl0=0d0. 

Рассматривая геометрию терма упругой линии в деформированном состоя-

нии согласно, можно записать 

dl0sin0 + dv = dlsin, dl0cos0 + dw = dlcos    (3) 

которые с учетом соотношения (1) примут вид: 

dv/dl0 = (1+0)sin -sin0, dw/dl0=(1+0)cos-cos0    (4) 

Для того чтобы установить распределение деформации в поперечном сече-

нии используем гипотезу плоских сечений и рассмотрим деформацию элемен-

тарного отрезка СД на расстоянии y от термоупругой линии. 

Деформация СД слоя определяется как 

сд=(+y)d-(0+y)d0/(0+y)d0, сд=(+y)d/(1+y/0) 0d0 -1  (5) 

Очевидно, что для стержней y/01(не рассматриваем стержни большой 

кривизны, для которых y и 0 соизмеримы). В таком случае1/(1+y/0)=1-

y/0+(y/0)
2-…и пренебрегая слагаемыми высшего порядка малости, с учетом по-

следнего выражения формула (1) примет вид 

сд=0+ x y,       (6) 

где введено обозначение x =d(1-/0)/dl0   (7) 

или x =(1+0)(1/-1/0) 

Из последнего выражения следует, что кривизна после деформации 

1/=1/0+ x /(1+0)      (8) 

Используя соотношения (4.5) и (4.6) получим 

d/dl0=(1+0)/0+     x  (9) 

Таким образом, получили дифференциальное уравнение для угла наклона 

касательной, которое совместно с уравнениями (2) описывают геометрию дефор-

мирования при больших перемещениях с учетом деформации (растяжения – сжа-

тия) терма упругой линии. 
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Для того чтобы определить неизвестные параметры 0и x , имеем уравнения 

равновесия:  

dF = N, ydF = M,     (10) 

где N – нормальная сила, M – изгибающий момент в поперечном сечении 

стержня. 

При решении термо упругой задачи полная деформация определяется как 

сумма упругих e и температурных t деформации (=e+t). Тогда с учетом за-

кона Гука и выражения (4.4), для напряжения получим 

=E(t)(0+ x y)-E(t)t (11) 

где E(t) – модуль упругости, t – температура. 

В ряде случаев при вычислении полной деформации необходимо учитывать 

также дополнительные деформации 0, которые связаны с фазовыми превраще-

ниями (=e+t+0). Например, для материалов с памятью формы в интервале тем-

ператур термо упругих мартенситных превращений дополнительными деформа-

циями являются фазовые деформации, которые вычисляются как 0=B(tm-Ms
m), 

где B и m постоянные материала, Ms – температура начала фазового превраще-

ния. В таком случае для напряжения имеем =Ф(t)(0+ x y)-Ф(t)t, (12) 

где Ф(t)=1/[1/E(t)+B( tm-Ms
m)]. В дальнейшем для общности используем уравне-

ние (12). 

Если подставить выражение (11) в условия (12), то после несложных преоб-

разовании получим 

0=N/A*+tФdA/A*, x =M/Ix
*+tyФdA/Ix

*,   (13) 

где A*=ФdA – обобщенная площадь, а Ix
*=y2ФdA – обобщенный момент инер-

ции поперечного сечения. 

Для того чтобы замкнуть систему уравнений (2), (7) необходимо получить 

дифференциальные уравнения статики. Рассмотрим равновесие элемента 

стержн. 
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На рис. 4.3 qz,qy составляющие вектора распределенных внещных сил, а m – 

интенсивность внешнего изгибающего момента. Уравнения статики имеют вид: 

dM/dl=Нsin-Rcos -m, 

dR/dl= -qy,dH/dl= -qz,     (14) 

где T и R горизонтальная и вертикальная составляющие вектора усилия в попе-

речном сечении стержня. Последняя система уравнений с учетом выражения (1) 

примет вид 

dM/dl0=(1+0)(Hsin-Rcos -m), 

dR/dl0= -(1+0 )qy, dH/dl0= -(1+0 )qz,   (15) 

Нормальную силу N в поперечном сечении определяем с помощью верти-

кального и горизонтального составляющих усилия. Из рис.4.4 можно записать

RHN   или iRiHiN   

Откуда нетрудно показать, что N=Hcos + Rsin (16) 

Поперечная сила в сечении определяется как Q = Hsinθ -Rcosθ (17) 

Таким образом, получили систему обыкновенных нелинейных дифференци-

альных уравнений плоского изгиба стержней при термомеханическом нагруже-

нии. Система состоит из трех уравнений геометрии (2),(7) и из трех уравнений 

статики (11) совместно с уравнениями (10) и (4.12). Заметим, что из приведенных 

выше уравнений при 0=0 и 0 получим уравнения изгиба прямых стержней. 

Соответственно будем иметь dzdl 0 и из уравнений геометрии (2), (7) 

x
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d
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Уравнения статики получим из системы (11): 

dM/dz=(1+0)(Hsin-Rcos -m), dR/dz= -(1+0 )qy, dH/dz= -(1+0 )qz, (19) 

Радиус кривизны стержня после деформации определяется по формуле: 

x


 01
        (20) 
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Уравнения (13) и (144.14) совместно с уравнениями (10) и (11) составляют 

замкнутую систему, которая описывает плоский изгиб прямого стержня при 

термо механическом нагружении. 

Полученная система обыкновенных нелинейных дифференциальных урав-

нений с граничными условиями эффективно решается численными методами, в 

частности методом продолжения решения по параметру с параллельной при-

стрелкой [3]. 
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