

## Шенкарь Татьяна Тарасовна

магистрант

## Харченко Юлия Валерьевна

магистрант, техник деканата

ФГБОУ ВО «Донской государственный

технический университет»

г. Ростов-на-Дону, Ростовская область

## ОЦЕНИВАНИЕ ПРИЕМЛЕМОСТИ ИЗМЕРИТЕЛЬНОГО ПРОЦЕССА

**Аннотация**: в статье рассмотрена методика сбора и обработки измерительной информации основных статических характеристик, используемых для оценки качества и приемлемости измерительных процессов. Результаты анализа приемлемости измерительного процесса свидетельствуют о приемлемости данного измерительного процесса в целом.

**Ключевые слова**: оценка качества, статистические характеристики, оценка приемлемости, измерительный процесс.

Методика сбора и обработки измерительной информации основных статических характеристик строится на основании измерений всех образцов выборки. При измерениях следует отбирать образцы в случайном порядке. Результаты измерений  $X_{ijk}$  для всех образцов, операторов и попыток представлены в таблице 1.

Таблица 1 Результаты измерений в Мпа

| Операторы и по- |   |        | I      | Торя,  | цкові  | Средние и размахи, |        |        |        |        |        |     |
|-----------------|---|--------|--------|--------|--------|--------------------|--------|--------|--------|--------|--------|-----|
| пытки           |   | 1      | 2      | 3      | 4      | 5                  | 6      | 7      | 8      | 9      | 10     | МПа |
| A               | 1 | 50,013 | 50,021 | 50,033 | 50,041 | 50,048             | 50,061 | 50,069 | 50,082 | 50,093 | 50,099 |     |
|                 | 2 | 50,014 | 50,019 | 50,03  | 50,038 | 50,049             | 50,062 | 50,072 | 50,08  | 50,089 | 50,101 |     |

|              | 3           | 50,009 | 50,018 | 50,029 | 50,044   | 50,051 | 50,061 | 50,071 | 50,078 | 50,09  | 50,098 |         |
|--------------|-------------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|---------|
| Среднее, МПа |             | 50,012 | 50,019 | 50,031 | 50,041   | 50,049 | 50,061 | 50,071 | 50,08  | 50,091 | 50,099 | 50,055  |
| Размах       | Размах, МПа |        | 0,003  | 0,004  | 0,006    | 0,003  | 0,001  | 0,003  | 0,004  | 0,004  | 0,003  | 0,0036  |
|              | 1           | 50,008 | 50,023 | 50,034 | 50,038   | 50,052 | 50,063 | 50,068 | 50,082 | 50,091 | 50,102 |         |
| В            | 2           | 50,012 | 50,018 | 50,031 | 50,041   | 50,049 | 50,062 | 50,072 | 50,083 | 50,09  | 50,101 |         |
|              | 3           | 50,013 | 50,019 | 50,029 | 50,042   | 50,047 | 50,061 | 50,071 | 50,079 | 50,088 | 50,102 |         |
| Среднее, МПа |             | 50,011 | 50,02  | 50,031 | 50,040   | 50,049 | 50,062 | 50,07  | 50,081 | 50,09  | 50,102 | 50,0557 |
| Размах, МПа  |             | 0,005  | 0,005  | 0,005  | 0,004    | 0,005  | 0,002  | 0,003  | 0,004  | 0,003  | 0,001  | 0,0037  |
|              | 1           | 50,011 | 50,016 | 50,029 | 50,042   | 50,049 | 50,061 | 50,07  | 50,079 | 50,091 | 50,099 |         |
| С            | 2           | 50,013 | 50,018 | 50,031 | 50,039   | 50,048 | 50,063 | 50,069 | 50,081 | 50,089 | 50,104 |         |
|              | 3           | 50,009 | 50,019 | 50,031 | 50,041   | 50,052 | 50,061 | 50,072 | 50,083 | 50,087 | 50,1   |         |
| Среднее, МПа |             | 50,011 | 50,018 | 50,03  | 50,04067 | 50,05  | 50,062 | 50,07  | 50,081 | 50,089 | 50,101 | 50,0552 |
| Размах, МПа  |             | 0,004  | 0,003  | 0,002  | 0,003    | 0,004  | 0,002  | 0,003  | 0,004  | 0,004  | 0,005  | 0,0034  |
| Среднее, МПа |             | 50,011 | 50,019 | 50,031 | 50,040   | 50,049 | 50,062 | 50,07  | 50,081 | 50,09  | 50,1   | 50,0554 |

<sup>2</sup> https://interactive-plus.ru

| Размах значений параметра образцов Rp, МПа               | 0,0893   |
|----------------------------------------------------------|----------|
| Средний размах измерений $\overline{\overline{R}}$ , МПа | 0,003567 |
| Размах между измерениями операторов Ro, МПа              | 0,000467 |

Осуществляются предварительные расчеты для анализа сходимости и воспроизводимости. Для каждого образца рассчитываются средние значение результатов его измерений каждым из операторов  $\bar{X}_{ij*}$  и размах результатов его измерений каждым из операторов  $R_{ij}$ . Также для каждого образца рассчитывается среднее значение  $\bar{X}_{i**}$  результатов его измерений всеми операторами по формуле:

$$\bar{\bar{X}}_{i**} = \frac{1}{M} \sum_{j=1}^{M} \bar{X}_{ij*}, \text{M}\Pi a.$$

Результаты измерений и предварительных расчетов сведены в форме таблицы (аналогичной таблице 1) в «Контрольном листе данных для расчета сходимости и воспроизводимости измерительного процесса». Осуществляется расчет оценок среднеквадратических отклонений (СКО) составляющих изменчивости измерительного процесса [1] Оценка СКО сходимости (повторяемости) измерительного процесса  $S_e$  определяется по формуле:

$$S_e = \frac{\bar{R}}{D_2},$$

$$S_e = \frac{0,003567}{1,693} = 0,0021$$

где  $D_2$  — константа для вычисления СКО с помощью размаха. При выборе константы  $D_2$  для расчета сходимости принимают H = Q и G = MN ( $D_2 = 1,693$ ).

Оценка СКО воспроизводимости измерительного процесса определяется по формуле:

$$S_o = \sqrt{\left[\frac{R_o}{D_2}\right]^2 - \left[\frac{S_e^2}{NQ}\right]},$$

где  $D_2$  — константа для вычисления СКО с помощью размаха. При выборе константы  $D_2$  для расчета воспроизводимости принимают H=M и G=1 ( $D_2=1,91$ ).

Если под радикалом окажется отрицательное число,  $S_o=0$ .

 $S_o = 0$  т. к. дисперсия от оператора меньше чем дисперсия от оборудования. Оценка СКО изменчивости образца измерительного процесса  $S_p$  определяется по формуле:

$$S_p = \frac{R_p}{D_2},$$

$$S_p = \frac{0,0893}{1.91} = 0,0468$$

где  $D_2$  – константа для вычисления СКО с помощью размаха. При выборе константы  $D_2$  для вычисления изменчивости образца принимают H=N и G=1 ( $D_2=1,91$ ).

Изменчивость какой-либо составляющей измерительного процесса определяется как доверительный интервал при уровне значимости  $\alpha$  (рекомендуется  $\alpha$ =0,99) для истинного значения измеряемого параметра образца, то есть если X – результат одного измерения параметра образца, то истинное значение измеряемого параметра с вероятностью  $\alpha$  будет лежать в интервале:

$$\left(X-\frac{K_{\alpha}S_{*}}{2};X+\frac{K_{\alpha}S_{*}}{2}\right),$$

где  $K_{\alpha}$  — определяют исходя из уровня значимости  $\alpha$  и таблицы значений функции Лапласа. Для рекомендуемого уровня значимости  $\alpha$ =0,99 значение  $K_{\alpha}$ =5,15;  $S_*$  — СКО анализируемой составляющей изменчивости [2] Рассчитываются доверительные интервалы для составляющих изменчивости измерительного процесса для заданного уровня значимости  $\alpha$ . Сходимость EV (повторяемость) результатов измерений рассчитывается по формуле:

$$EV = K_{\alpha}S_{e}, \, {\rm M}\Pi{\rm a}$$
  ${\rm EV} = 5.15 \cdot 0.0021 = 0.01085 \, {\rm M}\Pi{\rm a}.$ 

Воспроизводимость AV (изменчивость от операторов) результатов измерений рассчитывается по формуле:

$$AV = K_{\alpha}S_{o}$$
, МПа  $AV = 5.15 \cdot 0 = 0$  МПа.

Изменчивость PV образцов рассчитывается по формуле:

$$PV = K_{\alpha}S_{p}, \, \mathrm{M}\Pi \mathrm{a}$$
  $PV = 5,15 \cdot 0,0468 = 0,2409 \, \mathrm{M}\Pi \mathrm{a}.$ 

Сходимость и воспроизводимость R&R результатов измерений рассчитывется по формуле:

$$R\&R = \sqrt{EV^2 + AV^2}$$
, МПа $R\&R = \sqrt{0.01085^2 + 0^2} = 0.01085$  МПа.

Полная изменчивость TV измерительного процесса рассчитывается по формуле:

$$TV = \sqrt{R\&R^2 + PV^2}$$
, МПа $TV = \sqrt{0.01085^2 + 0.2409^2} = 0.272$  МПа.

Оценка приемлемости измерительного процесса заключается в сравнении его сходимости и воспроизводимости с полем допуска или полной изменчивостью измеряемого параметра образца.

Приемлемость измерительного процесса, применяемую для оценки соответствия измеряемого параметра образца допуску на него, определяют исходя из анализа величины относительной сходимости и воспроизводимости  $\%R\&R_{SL}$ , которая рассчитывается по формуле:

$$%R&R_{SL} = \frac{R&R}{USL\text{-}LSL} 100$$

$$%R&R_{SL} = \frac{0,01085}{50,1-50,01} 100 = 12,06\%.$$

На основании величины относительной сходимости и воспроизводимости  $%R\&R_{SL}$  и в соответствии с рекомендациями, представленными в таблице 2, делаются выводы о приемлемости измерительного процесса для оценки соответствия допуску [3].

Таблица 2 Выводы о приемлемости измерительного процесса

| Значение $%R&R_{SL}$ | Выводы о приемлемости измерительного процесса              |
|----------------------|------------------------------------------------------------|
| Менее 10             | Измерительный процесс приемлем для оценки соответствия до- |
|                      | пуску                                                      |

| От 10 до 30 | Измерительный процесс может быть приемлем в зависимости от важности применения, стоимости средств измерительной техники и т. п. |
|-------------|---------------------------------------------------------------------------------------------------------------------------------|
| Более 30    | Требуются улучшения измерительного процесса                                                                                     |

Вывод: так как значение  $\%R\&R_{SL}$  находится в пределах от 10 до 30, следовательно измерительный процесс может быть приемлем в зависимости от производственных факторов (стоимости измерительной техники, важности применения и т. п.).

## Список литературы

- 1. О средствах измерения [Электронный ресурс]. Режим доступа: http://metrologu.ru (дата обращения: 14.06.2016).
- 2. Раннев Г.Г. Методы и средства измерений: Учебник для вузов М.: Академия, 2003.
  - 3. Русин А.П. Методы и средства измерений: Курс лекций.