

Ситдикова Татьяна Сергеевна

заведующая отделением, врач аллерголог-иммунолог

Городской аллерго-респираторный центр

КГБУЗ «Владиростокский кличико диагиостический изита»

КГБУЗ «Владивостокский клинико-диагностический центр»

г. Владивосток, Приморский край

Просекова Елена Викторовна

д-р мед. наук, профессор, заведующая кафедрой ФГБОУ ВО «Тихоокеанский государственный медицинский университет» Минздрава России г. Владивосток, Приморский край

Турянская Алина Ивановна

ассистент кафедры

ФГБОУ ВО «Тихоокеанский государственный медицинский университет» Минздрава России г. Владивосток, Приморский край

DOI 10.21661/r-468895

ЭФФЕКТИВНОСТЬ ИММУНОТРОПНОЙ ТЕРАПИИ У ДЕТЕЙ С ВИРУС-ИНДУЦИРОВАННОЙ БРОНХИАЛЬНОЙ АСТМОЙ: ДИНАМИКА ПОКАЗАТЕЛЕЙ ВРОЖДЕННОГО И АДАПТИВНОГО ИММУННОГО ОТВЕТА

Аннотация: в статье проведена оценка клинико-иммунологической эффективности включения иммунотропных препаратов в программу терапии вирусиндуцированного фенотипа бронхиальной астмы у детей. В открытом проспективном параллельном исследовании у 60 детей с верифицированным вирус-индуцированным фенотипом бронхиальной астмы с клиническим течением средней тяжести, проводили сравнительный анализ динамики клеточных факторов врожденного и адаптивного иммунного ответа при различных программах терапии в течение года. В зависимости от проводимой терапии методом случайной выборки было выделено три группы сопоставимые по численности (n=20),

возрасту и полу. В лечении у детей в первой группе применялась базисная противовоспалительная терапия антилейкотриеновыми препаратами в сочетании с низкими дозами ингаляционных глюкокортистероидов, во второй – к базисной терапии подключали лизаты бактерий Staphylococcus aureus, Streptococcus pyogenes, Streptococcus viridans, Streptococcus pneumoniae, Klebsiella pneumoniae, Klebsiella ozaenae, Haemophilus influenzae B, Neisseria catarrhalis (Исмиген таблетки подъязычные 7 мг по 1 таблетке 1раз в день, в течение 10 дней с перерывом в 20 дней, три курса) в третьей помимо базисной терапии применяли глюкозаминилмурамилдипептид (Ликопид таблетки 1 мг 1 раз в день в течение 10 дней, с перерывом в 20 дней- три курса). Оценку клинико-иммунологической эффективности включения различных иммунотропных препаратов в программу терапии детей с вирус-индуцированным фенотипом бронхиальной астмы с монирорингом показателей врожденного и адаптивного иммунитета проводили до начала терапии и в течении последующих трех месяцев. Оценку клеток проводили на многопараметровом проточном цитофлюориметре «COULTER EPICS XL» фирмы Beckman Coulter Inc. Иммуноферментным методом определяли уровни цитокинов реактивами «R & D Diagnostics Inc» USA и продукцию цитокинов исследовали реагентами «Вектор-Бест» г. Новосибирск. Статистическая обработка с использованием программы «Statistica 10» с критическим уровнем значимости р(0,05, исследование связей коэффициентом ранговой корреляции Спирмена.

Ключевые слова: клеточные факторы иммунной защиты, вирус-индуцированный фенотип, бронхиальная астма, дети, иммунотропная терапия.

Результаты исследования механизмов врожденного и адаптивного иммунного ответа у детей с вирус-индуцированным фенотипом бронхиальной астмы выявили вариативность функциональных и количественных характеристик иммунокомпетентных клеток и цитокинового профиля и иммуноопосредованные факторы, предрасполагающие к персистенции вирусных инфекций и инициации сенсибилизации с развитием эозинофильного воспаления: нарушения клеточной

цитотоксичности, преобладание цитокинов Th2 и Th17 профилей, угнетение индуцированной выработки клетками крови ИФНү и отсутствие нормализации данных изменений в первой группе детей, получавших только базисную противовоспалительную терапию. Применение иммунотропных препаратов у детей с вирус-индуцированным фенотипом астмы привело к достоверному увеличению показателей спонтанной и митоген-индуцированной способности клеток к синтезу ИФНү и различной степени коррекции клеточных показателей. В третьей группе детей коррекция функциональных и количественных изменений иммунокомпетентных клеток фиксировалась в более ранние сроки и была выше чем у детей, принимавших Исмиген (ДИ спонтанной продукции ИФНү – 7,23-8,15 пг/мл против 5,04–5,93 пг/мл, митоген-индуцированной ДИ 7,91–8,89 пг/мл против 5,03–6,20 пг/мл соответственно).

Актуальность. При бронхиальной астме воспаление дыхательных путей у генетически предрасположенных лиц инициируется дисрегуляцией иммунного ответа с участием эозинофилов, базофилов, тучных клеток, макрофагов и других эффекторных клеток, продуцирующих медиаторы, реализующие хоконстрикцию, отек дыхательных путей, гиперпродукцию слизи, повреждение эпителиальных клеток и пролиферацию гладкой мускулатуры. Иммунная реакция организма на антигены инфекционной и неинфекционной природы определяется процессами пролиферации, дифференцировки и программированной гибели лимфоцитов [4, с. 15-24; 6, с. 79-85; 10, с. 835-846] Иммунологические показатели отражают реакции организма на воздействие патологических факторов, активацию или истощение иммунной системы. Эффекторные свойства иммунокомпетентные клетки реализуют через синтез различных цитокинов [2, с. 30–35; 3, с. 525–538; 5, с. 7–26]. В спектре характеристик воспаления, определяющих фенотип заболевания, учитывается активность цитокинов и функциональные изменения интерферон-продуцирующих клеток, влияющих на эффективность противовоспалительной терапии различных фенотипов БА у детей.

Дисбаланс цитокиновой регуляции взаимодействия и функционирования иммунокомпетентных клеток имеет патогенетическое значение при реализации

различных фенотипов бронхиальной астмы, что определяет актуальность оценки эффективности и обоснованности включения иммунотропных препаратов в программы терапии данной патологии [1, с. 228–229; 7, с. 19–26; 8, с. 47].

Цель исследования — анализ клинико-иммунологической эффективности применения иммунотропных препаратов в сочетанной терапии вирус-индуцированного фенотипа бронхиальной астмы у детей на основе мониторинга показателей врожденного и адаптивного иммунного ответа.

Материалы и методы. Под наблюдением в городском аллерго-респираторном центре и центре здоровья КГБУЗ «Владивостокский клинико-диагностический центр» (главный врач А.А. Кабиева) находилось 60 детей (3–11 лет) с верифицированным диагнозом вирус-индуцированного фенотипа бронхиальной астмы средней тяжести клинического течения в межприступный период и 30 здоровых сверстников. Верификация фенотипов БА проводилась по рекомендациям международного согласительного документа PRACTALL (2008) European Academy of Allergy and Clinical Immunology and the American Academy of Allergy [11, с. 5–34; 13, с. 34–36] с учетом наследственного и анамнеза заболевания, аллергологического обследования, цитологического исследования мокроты и назального секрета и ПЦР-анализа РНК и ДНК вирусов в соскобе со слизистой зева. Критерии исключения из исследования: тяжёлое течение бронхиальной астмы, применение иммунокорригирующих препаратов в предшествующие шесть месяцев. Клинико-лабораторное обследование проводили на кафедре клинической лабораторной диагностики, общей и клинической иммунологии ФГБОУ ВО ТГМУ Минздрава России (ректор В.Б. Шуматов) и в иммунологической лаборатории краевого клинического центра по профилактике и борьбе со СПИД и инфекционными заболеваниями ГБУЗ «ККБ №2» (заведующая С.П. Кругляк). Анализ клинико-иммунологической эффективности иммунотропной терапии проводили в открытом, параллельном проспективном исследовании. В зависимости от программы проводимой терапии методом случайной выборки дети с вирус-индуцированным фенотипом БА были разделены на три группы сопоставимые по численности (n = 20), возрасту и полу. При БА детям

⁴ https://interactive-plus.ru

первой группы базисная противовоспалительная терапия включала антилейкотриеновые препараты в сочетании с низкими дозами ингаляционных глюкокортистероидов, второй – базисная терапия сочеталась с лизатами бактерий Staphylococcus aureus. **Streptococcus** pyogenes, **Streptococcus** viridans. Streptococcus pneumoniae, Klebsiella pneumoniae, Klebsiella ozaenae, Haemophilus influenzae B, Neisseria catarrhalis (Исмиген таблетки подъязычные 7 мг по 1 таблетке 1раз в день, в течение 10 дней с перерывом в 20 дней, три курса), третьей – к базисной терапии подключали глюкозаминилмурамилдипептид (Ликопид таблетки 1 мг 1 раз в день в течение 10 дней, с перерывом в 20 дней – три курса). Критериями исключения из исследования являлись тяжёлое течение бронхиальной астмы и применение иммунокорригирующих препаратов в предшествующие шесть месяцев. Клинико-лабораторные исследования осуществляли на кафедре клинической лабораторной диагностики, общей и клинической иммунологии ФГБОУ ВО ТГМУ Минздрава России (ректор В.Б. Шуматов) и в иммунологической лаборатории краевого клинического центра по профилактике и борьбе со СПИД и инфекционными заболеваниями ГБУЗ «ККБ №2» (заведующая С.П. Кругляк).

Материалом исследования иммунологических параметров являлась венозная кровь. Анализ лейкоцитов, субпопуляционного состава лимфоцитов, процессов активации клеток периферической крови проводили с помощью многопараметрового проточного цитофлюориметра «COULTER EPICS XL» фирмы Вескта Coulter Inc, станции для подготовки проб Coulter Prep Plus и Coulter TO-ргег с подбором панелей моноклональных антител с многоцветной комбинацией флюорохромов. Для иммунофенотипирования использовали флюоресцентные частицы Flow Count. Определяли Т-клетки, Т-хелперы, Т-цитотоксические, регуляторный индекс, В-клетки, натуральные киллеры (NK-клетки), цитолитические Т-клетки (NKT-клетки) и активированные Т- и В-клетки (CD3+CD19-, CD3+CD95+, CD3+CD4+, CD3+CD8+, CД4+СД8+, CD3-CD19+, CD3- CD16+ CD56+, CD3+CD16+ CD56+, CD3+CD25+, CD3+HLA-DR+, CD3-HLA-DR+).

Результаты представлены в виде процента позитивных клеток и в абсолютных значениях с учетом данных клинического анализа крови.

Уровни интерлейкинов 4, 6, 8, 13, 17А (ИЛ-4, ИЛ-6, ИЛ-8, ИЛ-13, ИЛ-17А) и интерферона гамма (ИФНү) в сыворотке крови исследовали в сендвич-варианте твердофазного иммуноферментного анализа реактивами фирмы «R & D Diagnostics Inc» USA согласно прилагаемой инструкции с учетом результатов на иммуноферментном анализаторе и расчетом построения калибровочной кривой с помощью компьютерной программы в пикограммах в миллилитре (пг/мл). Спонтанную и митоген-индуцированную продукцию ИЛ-4 и ИФНу клетками цельной крови исследовали с применением набора реагентов «ЦИТОКИН-СТИ-МУЛ-БЕСТ» ЗАО «Вектор-Бест» г. Новосибирск.

Для статистической обработки цифровых данных использовали методы описательной, параметрической и непараметрической статистики программы «Statistica 10» с подсчетом: средней арифметической (М), среднего квадратичного отклонения (σ), средней ошибки средней арифметической (±m), доверительного интервала (ДИ), коэффициента достоверности показателя (t) и различий (t и р) с критическим уровнем значимости р<0,05. Проводили корреляционный анализ (г – коэффициента корреляции) исследования связей коэффициентом ранговой корреляции Спирмена и проверку нормальности распределения значений признака (Shapiro-Wilk,s). Частотное распределение данных в каждой из сравниваемых групп соответствовало закону нормального распределения.

Результаты. У детей с вирус-индуцированным фенотипом БА в периферической крови абсолютное число Т-лимфоцитов с цитотоксическими функциями, натуральных киллеров и показатели экспрессии активационных маркеров (CD3+HLA-DR+) достоверно ниже показателей здоровых детей (при р < 0,05, р < 0,01, р < 0,05 соответственно) в сочетании с низкой экспрессией на клетках Т-лимфоцитов CD95+- 2,76 \pm 0,32% (у здоровых 6,12 \pm 0,28% при р<0,01).

Показатели цитокинового спектра сыворотки крови детей с вирус-индуцированным фенотипом бронхиальной астмы составляли: ИФНү – $14,32 \pm 1,22$ пг/мл в ДИ 12,29-16,33 пг/мл, ИЛ- $4-18,60 \pm 1,60$ пг/мл в ДИ 16,83-23,16 пг/мл,

ИЛ-6 — 12,76 \pm 1,27 пг/мл в ДИ 10,03—14,86 пг/мл, ИЛ-8 — 34,55 \pm 2,23 пг/мл в ДИ 30,84 - 38,26 пг/мл, ИЛ- $13 - 20,97 \pm 0,94$ пг/мл в ДИ 16,98 - 22,80 пг/мл. Исследования цитокин продуцирующей активности клеток крови у детей с вирус-индуцированным фенотипом БА определили показатели спонтанной продукции ИФНу и ИЛ-4 на уровне 4.75 ± 0.45 пг/мл и 1.69 ± 0.09 пг/мл и после индукции митогеном показатели ИФНу и ИЛ-4 составили $4,54\pm0,39$ пг/мл и $10,5\pm1.8$ пг/мл соответственно. Мониторинг содержания ИЛ-17А в сыворотке крови у детей с БА зафиксировал уровни – 152,73±12,32 пг/мл в ДИ 115,87–188,65 пг/мл. У детей с вирус-индуцированным фенотипом заболевания, отмечена высокая обеспеченность лейкоцитами и Т-хелперами, в сочетании с дефицитом цитотоксических Тлимфоцитов, натуральных киллеров и цитолитических NKT – клеток (CD3⁺/ CD16⁺ CD56⁺). Согласно литературным данным, натуральные киллеры и цитотоксические Т-лимфоциты играют важную роль, в развитии гиперреактивности дыхательных путей, эозинофильном воспалении и в патогенезе астмы [12, с. 239– 248]. Дефицит NK-клеток может приводить к развитию острых респираторных инфекций, что является провоцирующим фактором для воспалительного процесса у больных БА [9, с. 8–11].

При мониторинге показателей врожденного и адаптивного иммунитета в первой группе детей с базисной терапией в течение трех месяцев не зафиксировано достоверной коррекции дисбаланса цитокинового профиля и нарушений функциональной активности и обеспеченности иммунокомпетентных клеток. В процессе терапии у детей данной группы отмечена нормализация абсолютного числа нейтрофильных гранулоцитов $5.58 \pm 0.21 \ 109/л$ (p < 0.05).

Динамика иммунологических показателей у детей с использованием в программе терапии трех курсов лизата бактерий включала: нормализацию числа лейкоцитов, лимфоцитов, нейтрофильных гранулоцитов и Т-лимфоциты (CD3+CD19-- 7,56 \pm 0,28 109/л (p < 0,001); 38,43 \pm 1,10% (p < 0,01) и 3,05 \pm 0,15 109/л (p < 0,05); 48,75 \pm 1,15% (p < 0,01) и 3,58 \pm 0,17 109/л (p < 0,01); 70,70 \pm 1,40% (p < 0,05) и 1980,90 \pm 69,98 кл/мкл (p < 0,05) соответственно); увеличение числа Т-хелперов CD3+CD4+, Т-цитотоксических CD3+CD8+ лимфоцитов и

цитолитических NKT- клеток CD3+/CD16+/CD56+: $44,34 \pm 0,71\%$ (p < 0,05) и $1458,25 \pm 56,51$ кл/мкл (p < 0,05); $28,74 \pm 0,63\%$ (p < 0,001); $4,81 \pm 0,14\%$ (p < 0,05).

В группе детей, применявших Ликопид, мониторинг иммунологических по-казателей периферической крови зафиксировал нормализацию общей обеспеченности лейкоцитами, лимфоцитами и нейтрофильными гранулоцитами. Динамика клеточных показателей включала увеличение Т-лимфоцитов, восстановление пролиферативного и активационного потенциала цитотоксических Т-лимфоцитов (CD3+CD19- и CD3+HLA-DR+: $7.39 \pm 0.13109/\pi$ при р < 0.001; $33.46 \pm 1.41\%$ при р < 0.001 и 2.74 ± 0.12 $109/\pi$ при р < 0.001; $40.66 \pm 1.66\%$ при р < 0.001; $65.05 \pm 1.40\%$ при р < 0.01; $1.52 \pm 0.15\%$ при р < 0.05). В процессе терапии в третьей группе у детей зафиксировано увеличение удельного веса и абсолютного числа CD3+CD4+CD8- клеток до $52.63 \pm 0.98\%$ (р < 0.001) и 2044.50 ± 127.56 кл/мкл (р < 0.05); CD3+CD4-CD8+ лимфоцитов $33.92 \pm 1.05\%$ (р < 0.001) и 842.45 ± 98.08 кл/мкл (р < 0.05); CD3+CD25+ $4.66 \pm 0.41\%$ (р < 0.01); CD3-/CD16+/CD56+ $11.27 \pm 0.55\%$ (р < 0.001) и 592.30 ± 46.10 кл/мкл (р < 0.001); CD3+/CD16+/CD56+ $6.94 \pm 0.32\%$ (р < 0.001) и 287.45 ± 17.83 кл/мкл (р < 0.001).

В группах детей с БА при включении в программу иммунотропных препаратов при исследовании в динамике определялось увеличение спонтанной и митоген-индуцированной способности клеток к синтезу ИФНү, более значимое при использовании Ликопида (в третьей группе после терапии ДИ спонтанной продукции ИФНү 7,23–8,15 пг/мл, митоген-индуцированный -ДИ 7,91–8,89 пг/мл против 5,04–5,93 пг/мл и 5,03–6,20 пг/мл во второй группе соответственно при р<0,01). Противоположные характеристики получены во второй и третьей группе при анализе динамики продукции клетками периферической крови ИЛ-4 (спонтанной и митоген-индуцированной): у детей принимавших Ликопид стимуляции синтеза не отмечено, у детей с включением Исмигена зафиксировано недостоверное увеличение митоген-индуцированной продукции. В первой группе при противовоспалительной базисной терапии в течение трех месяцев

сохранялись и у 25% детей усугубились нарушения митоген-ндуцированной способности клеток синтезировать ИФН_v.

Выводы

Показатели врожденного и адаптивного иммунного ответа у детей с реализацией вирус-индуцированного фенотипа бронхиальной астмы имеют свои иммунные патогенетические значимые особенности, что определяет актуальность индивидуализации программ терапии БА с включением иммунотропных препаратов.

Исследования показателей врожденного и адаптивного иммунного ответа у детей с вирус-индуцированным фенотипом БА выявили снижение абсолютного числа Т-лимфоцитов с цитотоксическими функциями, экспрессии активационных маркеров (CD3⁺HLA-DR⁺) в сочетании с низкой экспрессией молекулы CD95⁺ на Т-лимфоцитах (участвующей в поддержании клонального баланса лимфоидных клеток и предотвращении избыточной активации иммунной системы), дефицит NK- и NKT-клеток, активацию синтеза цитокинов Th-2 и Th-17 профиля, угнетение индукционного потенциала синтеза клетками ИФНу с регуляторным коэффициентом КИФНу/ИЛ-4 – 2,06±0,19.

При вирус-индуцированном фенотипе бронхиальной астмы у детей выявлены количественные и функциональные нарушения клеточной цитотоксичности, высокое содержание цитокинов Th2 и Th17 профилей (ИЛ-4, ИЛ-6, ИЛ-8, ИЛ-13, ИЛ-17А) в сыворотке крови, угнетение индуцированной выработки ИФНү клетками крови, что можно отнести к факторам, предрасполагающим к длительной персистенции вирусных инфекций в дыхательных путях и инициации сенсибилизации организма с развитием эозинофильного воспаления.

Включение глюкозаминилмурамилдипептида в программы терапии вирусиндуцированного фенотипа бронхиальной астмы у детей корректирует дисбаланс продукции клетками периферической крови ИФНү и ИЛ-4, показателей клеточного звена иммунитета, определяет увеличение числа Т-лимфоцитов с цитотоксическими функциями и экспрессии активационных маркеров, что клинически визуализируется в уменьшении триггерной значимости вирусных инфекций, частоты и тяжести обострений БА и в повышении контроля за БА.

Список литературы

- 1. Гурина О.П. Эффективность применения препарата рибомунил при инфекционно-зависимой бронхиальной астме у детей / В.И. Тимохина И.С. Подосинников, А.Е. Блинов // Медицинская иммунология. СПб., 2003. С. 228—229.
- 2. Кудрявцев И.В. Анализ уровня экспрессии CD56 и CD57 цитотоксическими Т-лимфоцитами различного уровня дифференцировки / А.Г. Борисов, А.Е. Волков, А.А. Савченко, М.К. Серебрякова, А.В. Полевщиков // Тихоокеанский медицинский журнал. 2015. №2. С. 30–35.
- 3. Кудрявцев И.В. Определение основных субпопуляций цитотоксических Т-лимфоцитов методом многоцветной проточной цитометрии / А.Г. Борисов, И.И. Кробинец, А.А. Савченко, М.К. Серебрякова // Медицинская иммунология. 2015. N 17 (6). С. 525 538.
- 4. Курбачева О.М. Фенотипы и эндотипы бронхиальной астмы: от патогенеза и клинической картины к выбору терапии / К.С. Павлова // Российский аллергологический журнал. 2013. №1. С. 15–24.
- 5. Литвинова Л.С. Основные поверхностные маркеры функциональной активности Т-лимфоцитов / А.А. Гуцол, Н.А. Сохоневич, К.А. Кофанова, О.Г. Хазиахматова, В.В. Шуплецова, Е.В. Кайгородова, А.Г. Гончаров // Медицинская иммунология. 2014. №16 (1). С. 7–26.
- 6. Мицкевич С.Э. Фенотипы бронхиальной астмы у детей и дифференцированная тактика диагностики и лечения // Вестник Челябинского государственного университета. 2014. №4 (333). С. 79–85.
- 7. Немировская Т.И. Иммуномодуляторы бактериальной природы, зарегистрированные в Российской Федерации / В.П. Ковтун, М.В. Абрамцева, Н.В. Александрова, А.П. Тарасов, Р.Д. Салахова, В.А. Волков, В.А. Меркулов // БИО перпараты. 2014. С. 19–26.

- 8. Просекова Е.В. Роль Т и В лимфоцитов в реализации вирусиндуцированной бронхиальной астмы у детей / Т.С. Ситдикова, А.И. Турянская // Научнопрактическая ревматология. $2016. N extsuperscript{54.} C.$ 47.
- 9. Швец Е.А. Клинико-иммунологические характеристики при синдроме бронхиальной обструкции у детей / В.Г. Саватеева, Е.И. Васильева // Сибирский медицинский журнал. 2010. №2. С. 8–11.
- 10. Agache C. Untangling asthma phenotypes and endotypes / C. Akdis, M. Jutel, J.S. Virchov // European J. of Allergy and Clinical Immunology. 2012. №67. P. 835–846.
- 11. Bacharier L. The European Pediatric Asthma Group Diagnosis and treatment of asthma in childhood: a PRACTALL consensus report / B.A. Boner, K.-H. Carlsen, P.A. Eigenmann, T. Frischer, M.G, P.J. Helms, J. Hunt, A. Liu, N. Papadopoulos, T. Platts-Mills, P. Pohunek, F.E.R. Simons, E. Valovirta, U. Wahn, J. Wildhaber // Allergy. − 2008. − №63. − P. 5–34.
- 12. Truyen E. Association between sputum natural killer T-cells and eosinophilic airway inflammation in human asthma a / E. Truyen, L. Coteur, E. Dilissen // Int Arch Alergy Immunol. − 2010. − №153. − P. 239–248.
- 13. Wenzel S. Phenotypes & endotypes: Emerging concepts on asthma heterogeneity // Global atlas of Asthma. 2013. –P. 34–36.