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Введение 

Исследование многих физических процессов, в частности процессов диф-

фузии, связано с отысканием решения задачи математической физики и исследо-

ванием полученного решения. В данной работе рассматриваются численные ме-

тоды, для решения задачи диффузии в цилиндре конечной длинны используется 

метод сеток. 

Математическая постановка задачи 

Рассмотрим процесс диффузии в полой трубке, предполагая, что во всякий 

момент времени концентрация газа по сечению трубки одинакова. Также будем 

учитывать следующие предположения: 

1. Диффузия через боковую поверхность трубки отсутствует. 

2. Коэффициент диффузии является константой и не зависит от координаты. 

Процесс диффузии будем описывать функцией ),( txu , представляющей кон-

центрацию газа в сечении в момент времени t . 

Согласно закону Нернста масса газа, протекающая через сечение x  за про-

межуток времени ),( ttt  , равна 
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где D  – коэффициент диффузии, S  – площадь сечения трубки. 

По определению концентрации, количество газа в объеме равно 

uVQ  ; 

отсюда получаем, что изменение массы газа на участке трубки ),( 21 xx  при изме-

нении концентрации на u  равно 
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Составим уравнение баланса массы газа на участке трубки ),( 21 xx  за проме-

жуток времени ),( 21 tt , используя уравнения (1) и (2): 
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Представим это уравнение в следующем виде: 
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Продифференцировав последнее равенство, приходим к уравнению диффу-

зии в дифференциальной форме (для удобства в дальнейшем вместо  txu ,  будем 

писать просто u , подразумевая, что это функция от двух аргументов, а вместо 

 x  – просто  , учитывая тот факт, что в нашей задаче этот коэффициент явля-

ется константой): 
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Таким образом, получаем следующую математическую модель для нашей 

задачи: 
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Построение явной разностной схемы 

Для построения разностной схемы заменим область непрерывного измене-

ния аргументов функции ( , )u x t  равномерной сеткой: 

   tkxi khtihx  , где 
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xh  – шаг разбиения по оси x , I  – количество интервалов по x , 

th  – шаг разбиения по времени, K  – количество интервалов по времени. 

Аппроксимируем на этой сетке производные разностными соотношениями: 
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Начальное условие аппроксимируется следующим образом: 
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Граничные условия аппроксимируются выражениями: 
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Получим явную разностную схему: 



Центр научного сотрудничества «Интерактив плюс» 
 

4     https://interactive-plus.ru 

Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0) 

 

 







































Ii
l

i
u

KkuuH
h

uu

KkuuH
h

uu

KkIiu
h

uuu
D

h

uu

i

c

k

I

x

k

I

k

I

c

k

x

kk

k

i

x

k

i

k

i

k

i

t

k

i

k

i

,0
h2

cos1

,1,

,1,

1,0,1,1,
2

x0

1

0

01

2

11

1





 

Для вычислений преобразуем к следующему виду: 
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