
Scientific Cooperation Center "Interactive plus"

1

Content is licensed under the Creative Commons Attribution 4.0 license (CC-BY 4.0)

Кравченко Даниил Андреевич

студент

ФГБОУ ВО «Государственный университет

морского и речного флота

им. адмирала С.О. Макарова»

г. Санкт-Петербург

СЕРИАЛИЗАЦИЯ В ООП JAVA

Аннотация: статья посвящена понятию сериализации и связанным с ней

процессам в объектно-ориентированном языке программирования Java. Приве-

дены и описаны такие понятия как, сериализация и ее возможности, перси-

стентность, потоки. Автором рассмотрены классы и интерфейсы, необходи-

мые для реализации сериализации.

Ключевые слова: сериализация, персистентность, поток, объект, класс,

интерфейс.

Сериализация – это способность объекта сохранять полную копию его и лю-

бых других объектов, на которые он ссылается, используя поток вывода (напри-

мер, внешний файл). Таким образом, объект может быть воссоздан из сериали-

зованной (сохраненной) копии немного позже, когда это потребуется.

Сериализация впервые была введена в Java Development Kit версии 1.1. Она

предоставляет собой метод для преобразования различных объектов или групп

объектов, в битовые потоки или байтовые массивы, для дальнейшего сохранения

или сетевой отправки. Полученные таким методом битовые потоки или байтовые

массивы, возможно вернуть обратно в Java объекты. Непосредственно процесс

сериализации проходит автоматически в классах ObjectInputStream и

ObjectOutputStream. Реализовать данную функцию можно в процессе создания

класса используя интерфейса Serializable. Процесс сериализиции также известен

как маршалинг объекта, десериализация же известна как демаршалинг. Сериали-

зация – это механизм, позволяющий объекту сохранять свою копию и ссылки на

https://creativecommons.org/licenses/by/4.0/

Центр научного сотрудничества «Интерактив плюс»

2 https://interactive-plus.ru

Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0)

объекты, в внешний файл посредством класса ObjectOutputStream. Возможно со-

хранить различные структуры данных, диаграммы, объекты класса JFrame или

любые другие объекты, независимо от их типа. Также, сериализация позволяет

сохранить информацию о типе объекта, чтобы, при десериализации, точно вос-

создать тип объекта, перед сериализацией. Итак, сериализация предоставляет

следующие возможности:

− хранение объектов, или сохранение свойств объекта в внешний файл, на

диск или в базу данных;

− вызовов удаленных процедур;

− распределение объектов, для примера, в программных компонентах типа

COM, COBRA;

− идентификация изменений в данных переменных во времени;

− для полного понимания концепции сериализации, необходимо четко по-

нимать две другие концепции, такие как персистентность потоков и объектов;

− у любой программы должна быть способность записывать информацию в

внешний файл или поток, а также быть способной считывать эту информацию из

места ее хранения. В Java, каналы для записи и считывания данных, называются

потоками или stream (рис. 1).

-

Рис. 1. Представление Потоков

Потоки в основном принадлежат двум типам классов:

Scientific Cooperation Center "Interactive plus"

3

Content is licensed under the Creative Commons Attribution 4.0 license (CC-BY 4.0)

− Streams;

− Reader и Writer.

В каждом потоке для записи данных, содержится набор методов записи, а

также набор для чтения. При создании потока все подобные наборы методов

должны быть определены и вызваны.

Персистентность объекта это способность объекта существовать в незави-

симости от времени жизни приложения. Это означает, что после того как объект

перестает использоваться, встроенный мусорщик уничтожает данный объект, но

способность персистентности позволяет такому объекту переживать чистки му-

сорщика, что дает возможность в дальнейшем при запуске приложения обра-

тится к ним. Как способ реализации персистентность – это сохранение объектов

в базу данных или внешний файл, а затем восстановление объектов в их состоя-

ние до сохранения, при помощи использованных мест хранения. Для это про-

цесса и необходима сериализация. С ее помощью объект преобразуется, как

например в битовый поток, для последующего сохранения в внешний файл.

Для сериализации объектов класс должен реализовывать интерфейс

java.io.Serializable. У интерфейса Serializable нет методов, все что он делает это

помечает класс, для того чтобы можно было его идентифицировать, как сериа-

лизуемый. Только у подобного сериализованного класса поля объекта могут

быть сохранены. Стоит учесть, что методы или конструкторы не сохраняются,

как части сериализованного потока. Если какой-либо объект действует как

ссылка на другой объект, то поля этого объекта также сериализованны, если

класс этого объекта реализует интерфейс Serializable. Другими словам, получае-

мый таким образом граф этого объекта, сериализуем полностью. Граф объекта

включает дерево или структуру полей объекта и его подобъектов.

Особенность сериализации объектов использована во многих распределен-

ных системах, как способ передачи данных. Но сериализация раскрывает скры-

тые детали, таким образом разрушая подлинность абстрактных типов данных,

что в свою очередь разрушает инкапсуляцию. В то же время приятно знать, что

данные сериализованного объекта, те же самые данные, что были в исходном,

Центр научного сотрудничества «Интерактив плюс»

4 https://interactive-plus.ru

Содержимое доступно по лицензии Creative Commons Attribution 4.0 license (CC-BY 4.0)

оригинальном объекте. Это также отличная возможность для реализации интер-

фейса ObjectInputValidation и переопределения метода validateObject(), даже если

используются несколько строк кода.

Список литературы

1. Брюс Э. Философия Java. – Питер, 2009. – С. 289–291.

2. Документация Java Standard Edition [Электронный ресурс]. – Режим до-

ступа: https://docs.oracle.com/javase/8/docs/

3. Нимейер П. Программирование на Java. Исчерпывающее руководство для

профессионалов / П. Нимейер, Д. Леук. – 2014. – С. 609–611.

4. Сериализация и десериализация в Java [Электронный ресурс]. – Режим

доступа: http://www.ccfit.nsu.ru/~deviv/courses/oop/java_ser_rus.html

