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ОТРАЖЕНИЕ ФУНКЦИЙ И ЛИНЕЙНЫЙ ПРОГНОЗ 

Аннотация: доказана периодичность широкого класса функций как след-

ствие отражения четных и произвольных регулярных функций. С помощью рас-

смотрения нового скалярного произведения в пространстве линейной оболочки 

исходных n векторов доказывается совпадение значений двух разных скалярных 

произведений. Рассмотрен пример линейного преобразования на плоскости для 

симметричного случая, приводящий к возможности пользоваться ортогональ-

ностью сторон ромба при проекции на плоскость его сторон. 

Ключевые слова: оптимальная линейная оценка, отражение функций, пе-

риодичность регулярных функций, геометрия Лобачевского. 

Введение 

Первая часть статьи посвящена более подробному изложению краткого ре-

зультата предложения 2 статьи [1]. Основной результат первой части статьи из-

ложен в теореме 1. Из данного результата формально следуют основные резуль-

таты статей [1; 2], относящихся к преобразованию Лапласа, но тема данной ста-

тьи не имеет прямого отношения к результатам этих статей. 

В качестве иллюстрации результата теоремы 1 приведем пример, доказыва-

ющий возможность периодичности функции как результат отражения ее значе-

ний относительно какой-либо точки. В примере используются определение A-

симметрии: если в исходной системе координат уравнение комплексной функ-

ции равно ( )z f p= , то уравнение ( ) (2 )z g p f A p= = −  определяет симметричное 

отражение значений функции ( )f p  относительно точки (0 )B A=    

( ( ) ( ( ))g p f a p a= − − , если ( ( )) ( )f a p a f p+ − = ); мы будем называть данное 
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отображение A-симметрией ( )Af p . Если произвольную функцию ( )f p  сначала 

сдвинуть на величину 2A  вправо, а затем отразить относительно точки (0 )A , мы 

получим исходную функцию ( ) ( )f p f p− =  (достаточно проследить перемеще-

ние оси Re p A= −  при таком преобразовании). Затем сдвинем получившуюся 

функцию снова на 2A  вправо и отразим относительно точки (2 0)A  ; виду ис-

ходной четности результат преобразования совпадет со сдвинутой вправо на ве-

личину 2A  функцией ( )f p . Ввиду того, что результаты первого и второго пре-

образования совпадают с одной и той же функцией ( )f p−  (достаточно заметить, 

что второе преобразование аналогично первому, но сдвиг и отражение происхо-

дит с удвоенным значением параметров, следовательно результат такого преоб-

разования тоже ( )f p−  ), мы получаем, что результат сдвига ( 2f p A−  совпадет 

с исходной функцией ( )f p  как результат первого преобразования, то есть 

( 2 ) ( )f p A f p− = , и функция ( )f p  стала периодичной с периодом 2A . Данный 

факт иллюстрирует возможность двойной симметрии, приводящей к периодич-

ности, которая доказана в теореме 1 без предположения четности исходной точки 

относительно какой-либо точки (0 )A . В данной теореме из существования од-

ной A-симметрии выводится существование другой точки B-симметрии при 

A B . 

Вторая часть статьи посвящена изложению аналогичного факта на англий-

ском языке. Доказано совпадение двух разных скалярных произведений в про-

странстве векторов, приводящая к ортогональности сторон произвольного ромба 

с точки зрения двойного ортогонального преобразования, [3]. 

1. Отражение функций 

В теореме 1 доказана возможность двойной симметрии регулярной функции 

в относительно общих условиях, наложенных на эту функцию. 

Теорема 1. 

Пусть функция ( )z f p=  регулярна при всех 4 4A Re p A−   , (0 )A  . C точки 

зрения разных систем координат функция (2 )z f A p= − , определяющая A-
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симметрию, должна получаться так же как результат B-симметрии из одного ис-

ходного регулярного в исходных координатах отображения ( )z f p= , B A . 

Доказательство. 

Если сдвинуть начало координат в точку ( 0)A−  , то уравнения исходных 

отображений ( )f p  и (2 )z f A w= −  в новых координатах совпадают с уравнениями 

сдвинутых направо исходными отображениями: ( ) (3 )z f w A z f A w w p A= −  = −  = +  

(с точки зрения сопоставления точек комплексной плоскости данное сопоставле-

ние осталось прежним); ((4 ) )z f A w A= − − , если исходная функция ( )z f w A= − , 

( 2 0),B A= −   в новых координатах. Следовательно, в новых координатах эти две 

функции определяют исходное отображение и B-симметрию (симметрию в точке 

B). При этом значение в любой точке 3W A w= −  исходной функции f  совпадает 

со значением функции ( )g w  B-симметрии в точке w , симметричной относи-

тельно точки B , ввиду неизменности сопоставления точек, симметричных отно-

сительно B  для разных систем координат. С другой стороны B-симметрия в но-

вых координатах совпадает с D-симметрией в точке (3 2 0)D A=    в новых коорди-

натах в том смысле, что значение ( ) (3 )g w f A w= −  (то же самое как в B-симмет-

рии) это – значение функции ( )g w  в точке w , симметричной относительно точки 

3W A w= −  уже для новой точки симметрии D  (по определению функции 

(3 )z f A w= −  в новых координатах). Мы доказали, что исходное отображение то-

чек плоскости является одновременно B-симметрией и D-симметрией (

( 2 0) (3 2 0)B A D A= −   =    в новых координатах). 

Теорема 1 доказана. 

2. Геометрия на плоскости в разных масштабах (The English variant of main 

result) 

The second important fact of the article is related to the orthogonal transformation 

on a plane: 

1 1
(1 2)

1 1
A

 
=   

− 
 

where 
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1 2A A A A E−= =  = •  

we consider the A  matrix in the 1 2x x  basis in the symmetric situation, if 1 2x x = 

, and the linear optimal estimation of 
3x  is 3 1 1 1 2x̂ cQ Q x x c const=  = +  =   where 

1 2Q Q  are 

the diagonals of rhombus with the 1 2x x  sides. It is obviously, 

1 1 1

1 1 2 2 1 1 2 22 2 2 2Ax Q Ax Q A Q x A Q x A A− − −=   =   =  =  =   

By definition, 
1A  is the linear transformation with the A  matrix in the 

1 2x x  basis: 

1 1 1 1 2 22 2A x Q A x Q=   =  . We use the second scalar production from the article [3], (the 

first scalar production is the primary production). We can use, that 

1 1 1 2 2 1 1 1 2 1( ) ( )A x A x A x A x =  . The fact is a result of the formula 

1 1 1 2 2 1 1 1 1 2 1 2 1 2 2 2( ) ( ( ) ( ))A y A y A e e A e e    = +  + =  

1 1 1 1 1 2 2 1 1 2 1 2 2(( ) ( ))Ae Ae Ae Ae   = +  + =  

1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 1 2 1(( ) ( )) ( )Ae Ae Ae Ae A y A y   = +  + =    

1 1 1 2 1 2 1 2 2 2e e y e e y   + =  + =   

1 2 1 1 2i i i i i i i i iconst e x x x x e i  =  =    =      =  =    

where 

1 1 1 2 1 2 1 2( ) 2 ( ) 2Ae e e Ae e e= +   = −    

with help of 1 1 2 1 1 2 1 1 1( ) 1 ( ) ( ) 1i i i i i iAe Ae Ae Ae Ae Ae =   =  =  , and 1 2 2 1i iAe e  =  =  as the re-

sult of the orthogonal transformation of the 1 2 1 2 2( ) 0e e e e   = , i=1,2 (we use, that 

2 1 1i ie e  =  =  on the sides of the rhombus, and the iAe  expression is the linear combi-

nation and does not depend on the scalar production too); 2 1( ) ( ) 0i j i jE E E E i j =  =   , if 

i iE Ae= , 2 1 1 1 2i ie e i  =  =  =  , ( 1 2 2 1 2 2x x x x +  = −  , Ex x , for all x  [3]). From 

1 1 1 2 2 1 1 1 2 1( ) ( )A y A y A y A y =   for all 1 2y y  we get 1 2 2 1 2 10 ( ) ( )x x x x=  =   (we use 

1 1 1 1 2 1 2 2 1 2 2 2x E E y x E E y   = + =  = + =  for some constants 1 2i i i   =  ). The second fact 

we can obtain from 

2 2 2 2

1 1 1 2 2 1 1 1 2 2 1 1 1 2 1 1 1 1 2 1 1 2 10 ( ) ( 2 2) ( 2 2) ( ) ( )A x A x AQ AQ AQ AQ A x A x x x=  =    =    =  =   too, 

where 2 2

1A A E= =  in the 1 2x x  basis. As the result of the orthogonal A  transformations 
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we get 
1 2 1 2( ) ( ) 0AQ AQ x x =  =  (for both scalar productions from the first fact). It is the 

second fact. From the fact it is possible to suppose, that 1 2 1 2 1( ) ( ) 0x x x x =  =   
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