
Технические науки

1

ТЕХНИЧЕСКИЕ НАУКИ

Костевич Алексей Андреевич

бакалавр Белорусского государственного университета

информатики и радиоэлектроники,

инженер-программист

ИООО «ЭПАМ Системз»

г. Минск, Республика Беларусь

АНАЛИЗ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ УРОВНЯ ДОСТУПА К

ДАННЫМ НА ОСНОВЕ ПРИНЦИПОВ DDD

Аннотация: в статье кратко рассматриваются основы проектирования

модели предметной области на основе концепций Domain Driven Design. Выяв-

ляются и анализируются проблемы проектирования уровня доступа к данным

для объектов предметной области. Дается краткий анализ использования су-

ществующих технологий для реализации данного уровня. Как результат, пред-

ставлено решение для построения масштабируемого и эффективного решения

для хранения и доступа к данным данных в соответствии с правилами и концеп-

циями DDD.

Ключевые слова: модель предметной области, предметно-ориентирован-

ное проектирование, уровень доступа к данным, реляционная база данных,

NoSQL, агрегация.

На сегодняшний день программное обеспечение разрабатывается и исполь-

зуется для автоматизирования все более широкого круга процессов реальной

жизни. Естественная сложность моделируемых процессов и предметных обла-

стей в целом требовали поиска новых подходов к проектированию систем. Отве-

том на неуклонно возрастающую сложность бизнес правил и процессов стало

появление концепции DDD (сокр. от англ. Domain Driven Design – «предметно-

ориентированное проектирование»).

DDD, вместо существующего подхода проектирования модели под конкрет-

ную архитектуру, использует противоположный подход: «проектирование по

модели», ставя на первой место модель предметной области.

Центр научного сотрудничества «Интерактив плюс»

2 Приоритетные направления развития науки и образования

Таким образом, уровни стандартной многоуровневой архитектуры рассмат-

риваются в терминах DDD, как инфраструктура, необходимая для работы мо-

дели.

Организация хранения объектов предметной логики является одним из

наиболее проблемным и обсуждаемых механизмов. Чтобы выявить, в чем заклю-

чается проблема проектирования, необходимо рассмотреть базовые концепции

построения модели.

В соответствии с DDD, модель предметной области строится из трех основ-

ных элементов.

1. Объект-значение (Value Object) – элемент модели, полностью определя-

ющийся своими атрибутами [1, c. 103]. Объекты-значения не имеют своей инди-

видуальности и описывают признаки. Примерами таких элементов могут быть

цвет, высота, тег.

2. Сущность (Entity) – элемент модели, обладающие своей индивидуально-

стью и временем существования [1, c. 96]. Сущности всегда имеют идентифика-

тор, позволяющий отличить их от других сущностей. Например, близнецы, не-

смотря на одинаковые значения своих атрибутов, являются разными сущно-

стями: их уникальность определяется идентификатором.

3. Корень агрегации (Aggregate Root) – сущность, включающая в себя дру-

гие взаимосвязанные сущности и объекты-значения и представляющая собой не-

делимое целое с точки зрения изменения данных. Другими словами, корень аг-

регации – сущность, ответственная за соблюдение всех инвариантов своих внут-

ренних элементов [1, c. 126].

Согласно правилам DDD, вся работа с моделью предметной области должна

производиться только через корни агрегации, так как они несут ответственность

за проверку инвариантов. Нигде за пределами агрегата не может храниться

ссылка на что-либо внутри него. Из этого следует, что только агрегаты могут

извлекаться из базы данных и сохраняться в ней, т.е. агрегат представляет собой

границы транзакции [1, c. 127].

Технические науки

3

Стандартный подход многоуровневой архитектуры, применимый для по-

строения CRUD (сокр. от англ. Create, Read, Update, Delete) систем кажется на

первый взгляд, приемлемым решением для организации хранения агрегатов (рис.

1).

Рис. 1

Действительно, ведь реляционные базы данных вместе с ORM (сокр. от

англ. Object-Relational Mapping – «объектно-реляционное отображение») или со-

временные документно-ориентированные базы данных (MongoDB, RabenDB)

позволяют организовать хранение агрегатов, а паттерны проектирования –спро-

ектировать уровни абстракции и построить необходимую инфраструктуру. Од-

нако анализ такой архитектуры показывает, что она является мало пригодной на

практике и содержит концептуальные ошибки. Рассмотрим основные проблема

данного подхода.

1. При проектировании уровня представления (Presentation Layer) в боль-

шинстве случаев требуется извлечение не агрегатов, а моделей представления

(view models). Агрегаты предназначены для соблюдения инвариантов, а не для

отображения данных. Извлечение агрегатов для построения уровня представле-

ния – крайне неэффективный и слабо масштабируемый подход. Из-за этого сле-

дует, что уровень доступа к данным должен предоставлять инфраструктуру как

для записи агрегатов, так и для извлечения сложной модели представления.

Центр научного сотрудничества «Интерактив плюс»

4 Приоритетные направления развития науки и образования

2. Операции, применимые к модели предметной области, не симметричны

относительно операций CRUD. Использование таких подходов как, например,

Generic Repository, часто оказывается невозможным и является признаком ане-

мии спроектированной модели. Проектируемая модель может не поддерживать

удаления корня агрегации (Delete), но поддерживать его деактивацию

(Deactivate) или архивирование (Archive), или не поддерживать ни одну из них

вовсе. Таким образом, операции CRUD не являются реальными операциями

предметной области и не могут в общем виде быть на них отображены.

3. DDD – намного более глубокая теория, чем может показаться на первый

взгляд, и естественным путем решает множество существующих проблем CRUD

систем. Так, паттерн Unit Of Work, повсеместно встречающийся в реализациях

уровня доступа к данным для организации транзакций, является не только бес-

полезным для систем, построенных на основе DDD, но и нарушает принципы

предметно-ориентированного проектирования [5]. Возможность обновления не-

скольких агрегатов в рамках одной транзакции для обеспечения целостности

данных, предоставляемая паттерном Unit Of Work, просто не имеет смысла в тео-

рии DDD, так как агрегат – уже является естественной границей транзакции и

соблюдения инвариантов.

Кроме вышеописанных проблем существует ряд ограничений существую-

щих инструментов и технологий, значительно усложняющих процесс «проекти-

рования по модели».

1. Реляционные базы данных не предназначены для хранения агрегатов.

Данная проблема известна под названием «Object-Relational Impedance

Mismatch». Одним из решений данной проблемы является технология ORM

(сокр. от англ. Object-Relational Mapping – «объектно-реляционное отображе-

ние»). Однако существующие ORM библиотеки (Hibernate, Entity Framework)

выдвигают определенные требования к модели предметной области и делают не-

возможным обеспечение ее инкапсуляции (а значит и соблюдение инвариантов)

[6]. Это проблема может быть решена с помощью дополнительных уровней аб-

стракции, однако данное решение не всегда целесообразно.

Технические науки

5

2. Документно-ориентированные базы данных позволяют работать непо-

средственно с агрегированными данными (документами), однако отсутствие

полноценной поддержки принципов ACID (сокр. от англ. Atomicity, Consistency,

Isolation, Durability) между коллекциями документов значительно затрудняет их

применение. Несмотря на то, что агрегат является границей инвариантов и обес-

печение транзакционности в рамках одной коллекции документов, кажется до-

статочным для хранения агрегатов, на практике это не всегда соответствует дей-

ствительности. Дело в том, что почти в любой предметной области существуют

связи между агрегатами (ассоциации). Такие ассоциаций обычно проектируются

не с помощью прямых ссылок на другой агрегат, а с помощью объектов-значе-

ний, содержащих идентификатор другого агрегата [6]. Обеспечение целостности

данных такой модели существенно затрудняется при использовании баз данных,

не поддерживающих уровни изоляции (Isolation). Однако NoSQL базы данных

отлично подходят для извлечения заранее подготовленных (денормализован-

ных) моделей представления за счет высоких показателей производительности и

масштабируемости.

Основываясь на данных утверждениях, можно сделать вывод, что примене-

ние схожей с CRUD системами архитектуры является сложным, трудно поддер-

живаемым и плохо масштабируемым решением.

На сегодняшний день наиболее бескомпромиссным и гибким выглядит под-

ход, построенный на основе принципа CQRS (сокр. от англ. Command-Query

Responsibility Segregation – «разделение ответственности между командами и за-

просами»), позволяющий не только спроектировать выразительную и правиль-

ную модель, но и организовать эффективное извлечение и сохранение данных

при практически неограниченном уровне вертикальной и горизонтальной мас-

штабируемости системы [3, 8].

Основная идея CQRS – использование разных моделей данных и инфра-

структурных механизмов для операций чтения записи данных. В основе данного

принципа лежат два понятия: команда (Command), осуществляющая запись дан-

Центр научного сотрудничества «Интерактив плюс»

6 Приоритетные направления развития науки и образования

ных, и запрос (Query), возвращающий данные. Фактически, CQRS разделяет опе-

рации CRUD на две независимые группы: Read и Create/Update/Delete и пред-

ставляет их в виде специфических для рассматриваемой предметной области по-

нятий. Схемы такой архитектуры представлена на рисунке 2.

Рис. 2

Принцип CQRS позволяет масштабировать стороны чтения и записи неза-

висимо друг другу и проектировать каждую из сторон на основе наиболее под-

ходящих для нее технологий.

Рассматривая CQRS в контексте описанных проблем можно выделить сле-

дующее:

1. CQRS значительно облегчает проектирование уровня представления, т.к.

позволяет реализовать эффективное и хорошо масштабируемое решение для из-

влечения сложных структур данных [3, c. 32].

2. CQRS концептуально основывается не на общих операциях чтения/за-

писи, а на командах, специфических для рассматриваемой предметной области

и являющихся частью модели, делая ее более простой и выразительной.

Технические науки

7

3. CQRS предоставляет полную свободу в проектировании инфра-

структуры выполнения запросов и команд, делая возможным использование

наиболее подходящих технологий для решения каждой из задач. Данный подход

делает возможным использование NoSQL базы данных для выполнения запросов

к заранее подготовленным, денормализованным данным и реляционную базу

данных вместе с технологией ORM для выполнения команд над агрегатами, ис-

пользую все преимущества ACID. Еще одним вариантом, может быть примене-

ние технологии Event Sourcing, предоставляющую еще большую свободу при

проектировании системы [3, c. 50].

Принцип CQRS не решает всех проблем проектирования. Он направлен на

решение концептуальных проблем и не может обойти все технические ограниче-

ния. Однако, разделение ответственности между операциями чтения и записи,

позволяет свести эти ограничения к минимуму и использовать «правильные ин-

струменты» для решения проблем.

Следует отметить, что рассмотренные проблемы и пути их решения приме-

нимы не только системам, работающим со сложными предметными областями,

но и к системам, базирующихся на операциях CRUD. DDD позволяет строить

легко поддерживаемые и изящные архитектуры, независимо от сложности рас-

сматриваемой предметной области.

Список литературы

1. Эванс, Э. Предметно-ориентированное проектирование (DDD). Структу-

ризация сложных программных систем / Э. Эванс – Вильямс, 2011. – 448 c.

2. Фаулер, М. Шаблоны корпоративных приложений / М. Фаулер, J.P. – Ви-

льямс, 2011. – Vol. 544.

3. Command and Query Responsibility Segregation (CQRS) Pattern // [Electronic

resource] – Mode of access: http://msdn.microsoft.com/en-us/library/dn568103.aspx –

Date of access: 15.11.2014.

4. DDD Aggregate Component pattern in action // [Electronic resource] / J. Bo-

gard – Mode of access: http://lostechies.com/jimmybogard/2009/02/05/dddaggregate-

component-pattern-in-action – Date of access: 06.08.2014.

Центр научного сотрудничества «Интерактив плюс»

8 Приоритетные направления развития науки и образования

5. DDD: Persisting Aggregate Roots In A Unit Of Work// [Electronic resource] /

M. Mogosanu – Mode of access: http://www.sapi-

ensworks.com/blog/post/2013/05/01/DDD-Persisting-Aggregate-Roots-In-A-Unit-

Of-Work.aspx – Date of access: 11.11.2014.

6. Don't Use ORM Entities To Model The Domain // [Electronic resource] / M.

Mogosanu – Mode of access: http://www.sapi-

ensworks.com/blog/post/2012/04/20/Dont-Use-ORM-Entities-To-Model-The-Do-

main.aspx – Date of access: 09.08.2014.

7. Vernon, V. Implementing Domain-Driven Design / V. Vernon – СПб.: Ин-

карт, 2013. – Vol. 656.

8. Young G. CQRS Documents by Greg Young / G. Young – Vol 56.

