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Аннотация: в настоящее время существует множество методов решения 

задач целочисленного программирования для целевых функций с линейными огра-

ничениями. Однако, такие методы не позволяют эффективно решать задачи с 

нелинейными ограничениями, например, в задаче оптимизации заказа на подго-

товку кадров. В статье предлагается численный метод решения одной задачи 

целочисленного программирования с нелинейными ограничениями.  
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Введение 

В Ханты-Мансийском автономном округе – Югре разработана система мо-

ниторинга и прогнозирования кадровых потребностей. Однако, актуальными 

остаются задачи: 1) планирования и прогнозирования приема, подготовки и вы-

пуска профессиональных специалистов по укрупненным группам специально-

стей в учебных заведениях округа для реализации планируемых и прогнозируе-

мых темпов выпуска ВРП с учетом миграции населения и вахтового метода ра-

боты 2) прогнозирование необходимого числа мигрантов с разными уровнями 

образования по группам специальностей. Решению этих вопросов посвящена 

настоящая работа. 
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Решение этих задач требует решения задачи целочисленного программиро-

вания для расчета оптимальных для региона контрольных цифр приема в учре-

ждения высшего и среднего профессионального образования. Поиск оптималь-

ного решения, в свою очередь, формирует нелинейную целевую функцию, реше-

ние которой должны проводится на вычислительном кластере с минимальной 

вычислительной сложностью. 

Численный метод решения задачи целочисленного программирования с не-

линейными ограничениями 

При распределении оптимального, с точки зрения экономики региона, за-

каза на подготовку кадров, учреждениям профессионального образования [1], 

требуется решить следующую задачу: 
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где Xi – заказ на подготовку кадров по i специальности, Pi – потребность 

экономики региона в специалистах, S – суммарный заказ на подготовку кадров с 

учётом финансовых возможностей, А – количество доступных абитуриентов. 

Оптимальным решением задачи (1), будет ситуация, когда Xi=Pi, однако 

если решение Xi=Pi не удовлетворяют ограничениям, то задача (1) сводится к 

следующей оптимизационной задаче: 
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где: E>0, λi>=0, Zi>=1, Zi<>Zj, E, λi– целые числа. 

Рассмотрим следующею задачу: 
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где: φi>=0, i=1...n+1, Xj=Zj j=1...n, φi– целые числа. Пусть φi
* - решение за-

дачи (3), при этом существует такое Xn+1 что φn+1
*=0. Доказательство. Рас-

смотрим ситуацию когда Xn+1→0: 1. если φn+1
*=0, то φn+1

*/Xn+1=0; 2. если 

φn+1
*<>0, то φn+1

*/Xn+1=∞. Так как Xj>=1, то для всех Xj и φj выполняется следу-

ющее условие: 
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что и требовалось доказать.  

Соответственно если φi
* - решение задачи (2) и φn+1

*=0, то λj
*=φj

* (j=1...n) 

решение задачи (2). 

Если φi
* - решение задачи (3) и φn+1

*=0, тогда должно выполнятся следую-

щее условие: 
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Выразим из (5) φj: 
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Так как φj целочисленное то максимально возможное φj: 
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где F – функция округления вниз, иначе не выполнится условие (5). 

Следовательно, для решения задачи (3), нужно подобрать такое Xn+1 при ко-

тором 
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Тогда 
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решение задачи (3), так как мы не можем варьировать φj
* в силу условия (5), 

а λj
*=φj

* (j=1...n) решение задачи (2). 

Для определения Xn+1 предложен следующий алгоритм: 

1. Определяем диапазон значение Xn+1 в котором находится решение: 
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2. Получаем Xn+1 согласно следующему выражению: 
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переходим к третьему шагу.  

3. Если 𝐸𝐸 = ∑ 𝐹𝐹(𝛽𝛽𝑖𝑖𝑛𝑛
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ходим ко второму шагу. 

Апробация разработанного численного метода 

Проведём численную апробацию предложенного алгоритма при разном ко-

личестве неизвестных. Для определения эффективности предложенного алго-

ритма сравним его с известным методом решения [4], а именно метод ветвей и 

границ. В таблице 1 представлены результаты численного эксперимента, а 

именно время вычисления каждого алгоритма в зависимости от количества ис-

комых переменных. Численный эксперимент реализовался в среде Matlab, на 

ЭВМ со следующими характеристиками: процессор 2 ГГц, оперативная память 

2 ГБ. 
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Таблица 1 

Время выполнения алгоритмов в секундах 
Количество неизвестных 100 1000 2000 4000 5000 7000 10000 100000 1000000 
Предложенный алгоритм 0.00007 0.00066 0.0013 0.0025 0.0047 0.0056 0.0071 0.099 1.28 
Метод ветвей и границ  0.0018 0.197 1.56 8.84 17.18 89.21 543.7 ∞ ∞ 

 

Как показывает анализ таблицы 1, время выполнения предложенного алго-

ритма линейно возрастает с увеличением количества неизвестных переменных. 

Вычислительная сложность существующего метода, минимальна, ограниченна 

О(n2) операций [5], при этом с количеством неизвестных более 10 тысяч, не пред-

ставляется возможным провести расчёт на стандартных ЭВМ, так как не хватает 

ресурсов. 

Заключение 

В статье предложен алгоритм решения одной задачи целочисленного нели-

нейного программирования. Применение разработанного алгоритма, позволяет 

снизить время вычисления результатов и находить решения при большом коли-

честве неизвестных, что подтверждается численной апробацией.  
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