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Аннотация: в данной работе предлагается новый метод передачи ин-

формационного сигнала через многомодовое оптическое волокно, в основе ко-

торого лежит определение набора орбитальных моментов светового поля на 

приемнике, при условии, что на входной торец оптического волокна подается 

сигнал с заданными параметрами (кодированный информационный сигнал). 
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Использование многомодовых волокон в оптических линиях связи по 

сравнению с маломодовыми волокнами дает большие преимущества, так как 

позволяет передавать больший объем информации. Распространение в волокне 

нескольких мод с использованием модового уплотнения дает возможность па-

раллельной передачи данных. Принцип модового уплотнения данных состоит в 

использовании разных групп мод многомодового волокна в качестве независи-

мых информационных каналов в многомодовых волоконно–оптических линиях 

связи. Применение метода модового уплотнения сдерживалось наличием силь-
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ной взаимной связи мод в прежде выпускавшихся волокнах. Однако в настоя-

щее время уровень межмодовой связи в многомодовых оптических волокнах 

значительно снизился. Благодаря этому в последнее десятилетие появилось 

много работ посвященных передаче информации по отдельной моде многомо-

дового оптического волокна. Цель этих исследований – повышение информа-

ционной емкости многомодовых волоконно–оптических линий связи путем 

увеличения их коэффициента широкополостности. Особенно перспективно ис-

пользование многомодовых волокон для пространственного модового мульти-

плексирования [1], параллельной передачи данных [2] и передачи изображения 

через волокно [3]. 

Существуют различные способы возбуждения мод оптического волокна и 

их селекции на выходе. Среди методов возбуждения мод невысокого порядка – 

периодическая деформация (сдавливание или изгибание) волокна [4]. В этом 

случае энергия перекачивается из фундаментальной LP01 моды в следующую 

LP11 моду. Возбуждение LP11 мод может достигаться с помощью фазовой мо-

дуляции смещением диэлектрических пластинок, помещенных в волновой 

фронт гауссова пучка [5]. 

В работе [6] для селекции мод на выходе ступенчатого волокна, был ис-

пользован 5–порядковый амплитудный бинарный фильтр, закодированный по 

методу Ли и согласованный с пятью первыми LP–модами для ступенчатого оп-

тического волокна с числом отсечки V=5. Основной недостаток упомянутых 

амплитудных элементов – низкая энергетическая эффективность: для кодиро-

ванных амплитудных голограмм – менее 10% в центральном дифракционном 

порядке. Если же рассматривается многопорядковый оптический элемент, то 

эффективность уменьшается во столько же раз, сколько используется полезных 

порядков. Желание иметь один фильтр, согласованный с достаточно большим 

(20–30) количеством участвующих в анализе мод, сталкивается с проблемой 

невозможности детектировать корреляционный пик из–за слишком малого ко-

личества энергии, идущей в каждый полезный порядок. 

В оптическом волокне каждая мода несет орбитальный момент определен-



Естественные науки 

 

3 

ной величины, и может рассматриваться как поток фотонов с заданным орби-

тальным моментом, который в зависимости от параметров оптического волокна 

может иметь значения в широком диапазоне. В последнее время принято счи-

тать, что орбитальный момент фотона имеет огромный потенциал для исполь-

зования в квантовой информатике, поскольку имеет большее число степеней 

свободы [7]. Информация может быть декодирована с помощью перемножения 

набора состояний, так как фотон несет большое количество информации, рас-

пределенной по его спиновым и орбитальным квантовым состояниям. Исполь-

зование орбитального момента позволяет увеличить количество параметров, по 

которым можно модулировать оптические пучки, а именно, любая информация, 

содержащаяся в сигнале, может быть декодирована в фазу, интенсивность, по-

ляризацию, частоту и орбитальный момент света. Для передачи информации с 

использованием кодирования по орбитальному моменту необходимо не только 

вводить в волокно излучение с заданным набором орбитального момента, но и 

уметь определять модовый состав излучения на выходе из оптического волок-

на. Таким образом, важнейшим вопросом при разработке и исследовании мно-

гомодовых волоконно–оптических линий связи является разложение излучения, 

распространяющегося в оптическом волокне, по модам. Существуют множе-

ство таких методов [8–14]. Универсального же метода экспериментального 

анализа модового состава излучения многомодовых волокон с любыми пара-

метрами нет до настоящего момента. 

В данной работе предлагается новый универсальный для оптических воло-

кон с различными параметрами метод определения модового состава излуче-

ния, распространяющегося в оптическом волокне, в основе которого лежит раз-

ложение комплексного светового поля по неортогональным модам. Это позво-

лит применить принципы временного уплотнения сигнала и модового уплотне-

ния сигнала, где каждая из распространяющихся в многомодовом волокне про-

странственных мод рассматривается как отдельный канал, несущий свой сиг-

нал. Кодирование информации предлагается осуществлять комплексной функ-

цией распределения мод. Прекодировка осуществляется введением фотонов с 
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заданным орбитальным моментом на входном торце волокна. Из зарегистриро-

ванного светового поля на выходном торце волокна необходимо выделить ин-

формацию об орбитальных моментах каждой из мод. 

Итак, цель данной работы заключается в осуществлении временного и мо-

дового уплотнения данных, т.е. определение набора орбитальных моментов 

светового поля, распространяющегося в оптическом волокне, на выходном тор-

це волокна с известными параметрами на входном торце (решение так называ-

емой обратной задачи). Для этого был определен модовый состав излучения 

оптического волокна путем разложения комплексного светового поля по неор-

тогональным модам. 

Рассмотрим распространение света в оптическом волокне со ступенчатым 

профилем показателя преломления. В приближении слабонаправляющего вол-

новода можно записать четыре поляризационные моды в поперечном сечении 

на длине для любого значения орбитального момента ( 0)m m   и радиального 

квантового числа в следующей форме [8]: 
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Здесь e , ex y
 – собственные вектора, ( / )arctg x y  , 

, ( , )m NF x y  функции Бес-

селя, 
,m N

k постоянные распространения, определяющие скорость распростра-

нения мод. Набор поляризационных мод определяет набор орбитальных мо-

ментов, значение которых лежит в интервале m m   и может пробегать 

2 1m  значений. 

В общем виде разложение электрической составляющей светового поля, 

распространяющегося в оптическом волокне, можно представить в виде супер-

позиции поляризационных мод: 
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где 
,m N

kC  – комплексные коэффициенты при различных поляризационных 

модах, дающая каждая свой вклад в суммарное световое поле. Задача определе-

ния модового состава излучения сводится к поиску коэффициентов 
,m N

kC . Для 

удобства перейдем к сквозной нумерации мод вместо индексов , ,k m N  введем 

индексы , 0...( 1)i j L  , где ( 1)L   полное количество мод, распространяющих-

ся в оптическом волокне, и составим систему линейных уравнений, состоящую 

из ( 1)L   уравнений: 

1
* *

0

( , ) ( , ) ( , ) ( , )
L

j i i j

i

E x y M x y dxdy C M x y M x y dxdy




   . 

Для расчета комплексных коэффициентов Ci была написана программа в 

пакете MatLab. Для проверки правильности работы модели определения модо-

вого состава излучения была проведена серия расчетов с теоретически задан-

ным распределением поля. Генерировался случайно заданный модовый состав 

излучения ( , )E x y . Данное распределение поля ( , )E x y  раскладывалось на не-

ортогональные моды ( , )iM x y , представленные в формуле (1), на основе реше-

ния системы линейных уравнений (3), рассчитывались комплексные коэффици-

енты exp( )i aC C iC
   , здесь aC  – амплитудные коэффициенты, C

  – фазовые 

коэффициенты. Проверка осуществлялась сравнением рассчитанных комплекс-

ных коэффициентов Ci с заданными изначально. Результаты одного из тестовых 

расчетов для волокна с показателем преломления сердцевины 1,47con  , число-

вой апертурой 0,11aN  , радиусом сердцевины волокна 6r   мкм, длиной во-

локна 20lz   см на длине волны света 0,63   мкм представлены в таблице 1. 

В оптическом волокне с данными параметрами и для данной длины волны све-

та распространяются семь поляризационных мод ( , )i x yM  амплитудные aC  и 
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фазовые коэффициенты C


 мод ,m NM  представлены в табл. 1. 

Заданные (б) и рассчитанные (а) амплитудные коэффициенты aC , 
aC  и 

фазовые коэффициенты C


, C


, для каждой из пар ,m N  

m N  aC  C
  

aC  C
  

а б а б а б а б 

0 1 0,14 0,27 2,69 2,79 0,14 0,03 2,07 1,02 

0 2 0,23 0,04 3,10 –2,22 0,23 0,43 0,83 0,74 

1 1 0,09 0,09 –1,82 –1,82 0,38 0,38 3,13 3,13 

1 2 0,82 0,82 –1,54 –1,54 0,76 0,76 –0,25 –0,25 

2 1 0,69 0,69 1,73 1,73 0,79 0,79 2,13 2,13 

3 1 0,31 0,31 –2,01 –2,01 0,18 0,18 –2,6 –2,6 

4 1 0,95 0,95 –2,16 –2,16 0,48 0,48 1,4 1,4 
 

В результате тестирования обнаружено, что для 0m   погрешность опреде-

ления коэффициентов составляет 0,001%, однако для 0m   коэффициенты 

находились с погрешностью 16% для амплитудных значений и 18% для фазо-

вых. Данные результаты можно объяснить тем, что для 0m   распределение 

поля является осе симметричным и находятся несколько наборов модовых ко-

эффициентов, удовлетворяющих условию задачи. Таким образом, неоднознач-

ность решения задачи для 0m   не является критичной, так как любой из 

найденных решений для 0m   является удовлетворяющим. Полученные рас-

пределения полей с рассчитанными коэффициентами полностью идентичны 

распределению полей с заданными коэффициентами (рис.1), среднеквадратич-

ное отклонение распределений поля порядка 10
–12

. Таким образом, была решена 

задача определения модового состава излучения по теоретическому распреде-

лению поля на выходе из волокна, в основе которого лежит разложение по не-

ортогональным модам. Точность метода составила 0,001%. Данный метод пока-

зал хорошую точность для различных многомодовых волокон, в частности и 

для многомодового волокна с показателем преломления сердцевины 1,47con   

числовой апертурой 0,11aN  , радиусом сердцевины волокна 15 мкм, длиной 

волокна 23lz   см на длине волны света 0,63   мкм с 34 поляризационными 
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модами. 

 

Рис. 1 

Распределение интенсивности (а) и фазы (б) с рассчитанными коэффици-

ентами на выходном торце волокна, распределение интенсивности на входном 

торце волокна (в). 

Таким образом, предложен и теоретически реализован метод, позволяю-

щий определить модовый состав излучения, распространяющегося в многомо-

довом оптическом волокне, по известному распределению поля на выходном 

торце волокна, полученная точность определения комплексных коэффициентов 

поляризационных мод составила 0,001%, определен вклад каждой поляризаци-

онной моды, несущей свой орбитальный момент, в суммарное световое поле. 

Данный метод является универсальным, подходит для любого количества мод, 

распространяющихся в многомодовом оптическом волокне. 

Работа выполнена при поддержке Программы фундаментальных исследо-

ваний Министерства образования и науки Российской Федерации (888/2014 
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