Ю. С. Черкашин

ЭЛЕКТРОДИНАМИКА постмаксвелловская 2020

Пятое издание

Ю.С.Черкашин

ЭЛЕКТРОДИНАМИКА 2020 постмаксвелловская

Монография

Пятое издание, исправленное и дополненное

Чебоксары ЦНС «Интерактив плюс» 2022 УДК 537.8 ББК 31.21 Ч-48

Черкашин Ю.С.

Ч-48 Электродинамика 2020 постмаксвелловская : монография / Ю. С. Черкашин. – 5-е изд., испр. и дополн. – Чебоксары: ЦНС «Интерактив плюс», 2022. – 84 с.

ISBN 978-5-6048658-4-2

Приводится векторный анализ группы уравнений, часто именуемой «Уравнениями Максвелла». Собственно перу Максвелла принадлежит одно уравнение, в котором он ввел так называемый «ток смещения». Анализ показывает, что этот ток является лишней припиской и мешает взаимной согласованности уравнений группы.

После исключения этого тока исчезают волновые свойства электрического и магнитного полей. Электрическое и магнитное поля перестают быть «особой формой материи».

Далее дано краткое изложение основ новой электродинамики без уравнения Максвелла, записана группа уравнений, не имеющая внутри себя противоречий. За основу приняты закон Кулона и законы взаимодействия токов и уравнения потенциалов.

По-новому сформулирован закон электромагнитной индукции.

Даны начала новой теории распространения радиоволн.

В последней части приводятся примеры подробного, полного расчета электрических и магнитных потенциалов типичных источников.

Книга предназначена для научных работников, преподавателей, аспирантов, учителей и студентов.

© Черкашин Ю. С., 2021 © Черкашин Ю. С., 2022, с изменениями ISBN 978-5-6048658-4-2 DOI 10.21661/a-843 2022

Оглавление

Введение	4
1. Основания для пересмотра теории Максвелловской	
электродинамики	5
1.1. Анализ совместимости уравнений Максвелла	6
1.2. Распространение сигналов по двухпроводным линиям связи	9
2. Начала новой (постмаксвелловской) электродинамики	13
2.1. Электрические и магнитные потенциалы	14
2.1.1. Электрический потенциал неподвижных зарядов. Электрическо	be
поле	14
2.1.2. Магнитный потенциал подвижных зарядов. Магнитное поле	19
2.1.3. Закон электромагнитной индукции (дифференциальная форма)).
Взаимный переход скалярного электрического и векторного	
магнитного потенциалов	23
2.1.4. Полное электрическое поле. Работа сил поля	25
2.2. Система согласованных уравнений электродинамики	26
2.3. Источники электрических и магнитных потенциалов	30
2.4. Излучение и распространение потенциалов	34
2.5. Многочастотные поля	39
3. Примеры полей потенциалов и их производных полей	41
3.1. Примеры полей электрических потенциалов	41
3.1.1. Потенциал уединённого точечного заряда	41
3.1.2. Потенциал равномерно заряженной сферической поверхности	42
3.1.3. Электрический диполь	45
3.1.4. Электрический потенциал диэлектрического шнура	46
3.1.5. Электрический потенциал заряженного кольца	49
3.2. Примеры полей магнитных потенциалов	57
3.2.1. Отрезок прямого провода с током	58
3.2.2. Отрезок провода с осью, не совпадающей с осью координат	63
3.2.3. Векторный потенциал кольцевого тока	65
3.2.4. Векторный потенциал соленоида и тора	79
3.3. Общие замечания к разделу примеры потенциалов	80
Список цитируемой литературы	82

«Векторы \vec{E} и \vec{B} постепенно исчезают из современной записи физических законов: их вытесняют потенциалы \vec{A} и $\varphi \ll [4, c. 26]^*$.

Введение*

Шестьдесят лет тому назад автору этих строк довелось сдавать студенческие экзамены по Теоретическим основам электротехники. Вопрос экзаменационного билета: «На столе на подставке закреплен заряженный шар и рядом лежит магнит. Существует ли вектор Пойнтинга $[\vec{E}\vec{H}]$ и, если существует, то куда движется энергия?» В Основах Теории Электричества Тамма И.Е. в 1946 г [1. с. 503] и в учебнике под редакцией К.А. Круга в 1952 г [2. с. 371] утверждается "Мы приходим к представлению о беспрерывной циркуляции энергии по замкнутым путям в статическом электромагнитном поле". И дальше: "Представление это не приводит к каким либо следствиям, могущим быть проверенным на опыте, а потому лишено непосредственного физического смысла". Я повторил эти соображения. Преподаватель этого не читал и поставил мне неуд. Преподаватель на пересдаче (осенний), услышав повторенный мной вопрос и ответ, поставил отлично. Хвост был ликвидирован. Со временем я понял, что прав был все-таки преподаватель, который оценил мой ответ - «неудовлетворительно».

Главная ошибка в высказывании академика И. Е. Тамма заключается в отнесении такого рода поля к виду электромагнитных. Здесь имеет место два поля: одно электрическое без магнитной составляющей, второе магнитное без электрической составляющей, а не одно единое.

^{*} Здесь и далее цитаты из книг написаны наклонным шрифтом.

1. ОСНОВАНИЯ ДЛЯ ПЕРЕСМОТРА ТЕОРИИ МАКСВЕЛЛОВСКОЙ ЭЛЕКТРОДИНАМИКИ

Другим «казусом» стало известное положение, что магнитное поле длинного соленоида или тороидальной катушки с током во внешнем прострнстве равно нулю, а электрическое присутствует, то есть не выполняются уравнение Максвелла $rot\vec{B} = \mu_0\vec{j} + \frac{1}{c^2}\frac{\partial\vec{E}}{\partial t}$. (Магнитное поле \vec{B} равно нулю, значит, равен нулю его ротор и не может существовать переменное электрическое поле. Однако оно существует, на что указывает наличие напряжения во внешней вторичной обмотке трансформатора.)

Аналогично: «Итак, магнитное поле вне очень длинного соленоида действительно равно нулю, хотя векторный потенциал нулю не равен» [3, с. 285], [4, с. 21]. Сам Р. Фейнман видит причину этого несоответствия в игнорировании квантовых свойств поля [4, с. 17, 26].

Всякая теория является описанием, обобщением свойств группы опытов. Если, хотя бы один из опытов не подходит под описание, то неверна теория. (Сказанное относится и к тороиду, или тороид должен быть исключён из группы известных электромагнитных устройств).

Ещё, почему в теории распространения сигналов по двухпроводным линиям (переходные процессы) не применяют уравнения теории поля?

Эти факты требовали разрешения. Было задумано провести векторный анализ совместимости основных уравнений группы, называемых уравнениями Максвелла. Основные выводы этого сопоставления опубликованы несколько раз в изданиях, так называемых Международных конференций [5], [6]. Автор приходит к выводу, что основными уравнениями электродинамики являются не уравнения электрического и магнитного полей, а уравнения полей электрического и магнитного потенциалов (см. эпиграф).

1.1. Анализ совместимости уравнений Максвелла

Р. Фейнман приводит сводную таблицу формул электродинамики [4, с. 149].

Таблица 1

Перечень формул Р. Фейнмана		
Уравнения Максвелла		
$div\vec{E} = rac{ ho}{arepsilon_0},$	$div\vec{B}=0,$	
$rot\vec{E}=-\frac{\partial\vec{B}}{\partial t},$	$rot\vec{B} = \mu_0\vec{j} + \frac{1}{c^2}\frac{\partial\vec{E}}{\partial t}.$	
И их решения		
$\vec{E} = -grad \varphi - \frac{\partial \vec{A}}{\partial t},$	$\vec{B} = rot \vec{A}.$	
$\varphi(x, y, z, t) = \int \frac{\rho(t - r_{x\rho}/c)}{4\pi\varepsilon_0 r_{x\rho}} dV_{\rho},$		
$\vec{A}(x,y,z,t) = \int \frac{\mu}{dt}$	$\frac{x_0 \cdot \vec{j}(t - r_{xj}/c)}{4\pi \cdot r_{xj}} dV_j.$	
Потенциалы поля ф и А задаются		
источниками полей р и ј.		
$ abla^2 arphi = -rac{ ho}{arepsilon_0}$ и $ abla^2 ec{A} = -\mu_0 ec{J}$		

Если к известным уравнениям электрического и магнитного полей применить операторы векторной алгебры, можно обнаружить их взаимное несоответствие. Неожиданным является результат: введенный Максвеллом в систему параметров «ток смещения» оказывается лишним.

Если взять ротор от двух уравнений в середине таблицы, то должны получиться два основных уравнения Максвелла (строкой выше): $rot\vec{E} = -\frac{\partial\vec{B}}{\partial t}$, и $rot\vec{B} = \mu_0\vec{j} + \frac{1}{c^2}\frac{\partial\vec{E}}{\partial t}$.

Берём ротор от \vec{E} и, применяя второе уравнение из пары $\vec{B} = rot \vec{A}$, найдем: $rot \vec{E} = -rot grad \varphi - rot \frac{\partial \vec{A}}{\partial t} = 0 - \frac{\partial}{\partial t} rot \vec{A} =$ $= -\frac{\partial \vec{B}}{\partial t}$. Одно уравнение получилось. Для дивергенции вектора $\vec{E} = -grad\varphi - \frac{\partial \vec{A}}{\partial t}$ с учётом $\nabla^2 \varphi = -\frac{\rho}{s}$ получим:

 $div\vec{E} = -divgrad\varphi - \frac{\partial}{\partial t}div\vec{A} = -\nabla^2\varphi - \frac{\partial}{\partial t}div\vec{A} = \frac{\rho}{\varepsilon_0} - \frac{\partial}{\partial t}div\vec{A}.$

Для случая $div\vec{A} = 0$ (так всегда считалось с старой электродинамике [6]), найдём: $div\vec{E} = \frac{\rho}{\varepsilon_0}$. Два уравнения получились. Здесь одно уравнение вытекает из другого.

Эти преобразования выполнили Л.Д. Ландау и Е.М. Лившиц [7, с. 182].

Если аналогично взять ротор от второго уравнения $rot\vec{B} = rotrot\vec{A} = graddiv\vec{A} - \nabla^2\vec{A}$, то его значение будет отличаться от табличного.

Воспользуемся законом полного тока $rot \vec{H} = \vec{j}$, после умножения левой и правой частей уравнения на μ_0 , получим $rot(\mu_0 \vec{H}) = rot \vec{B} = \mu_0 \vec{j}$, [8, с.628]. Здесь нет «тока смещения». (в уравнении Максвелла $rot \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$ он есть). Уравнение Максвелла конфликтует с уравнением закона полного тока.

Последнее уравнение в группе выполняется всегда $div\vec{B} = divrot\vec{A} \equiv 0$ в соответствии с данными векторного анализа. Три уравнения из четырёх согласованы.

И.Е. Тамм в книге «Основы теории электричества» даёт поочерёдный последовательный вывод уравнений Максвелла. И.Е. Тамм вслед за Максвеллом вводит в формулы понятие плотность «тока смещения», как производную напряженности электрического поля по времени. Однако в параграфе «токи смещения» [1, с. 402] допущены ошибки.

Рисунок 1 из книги Тамма ИЕ "ОТЭ" Л1

Понятие плотность является характеристикой точки пространства. Но в приведенном на рисунке этого параграфа пространстве, ограниченном поверхностью, ни в точках объема, ни в точках на поверхности нет мест, где бы могло происходить суммирование плотности тока проводимости и так называемого тока смещения. На всей поверхности и внутри неё нет точек, содержащих ток проводимости, кроме места пересечения проводника этой поверхностью. В месте пересечения есть ток проводимости, однако отсутствует «ток смещения», то есть отсутствуют точки, в которых может происходить суммирование плотности тока проводимости с «током смещения». В этой связи не имеет смысла понятие «полного тока», так как он нигде не течёт и соответственно не должен присутствовать в уравнениях электродинамики.

Похожую ошибку делает Р. Фейнман [4, с. 79]. Через любую точку, выбранной на сферической поверхности петли, можно провести такую же соприкасающуюся петлю (обе петли вместе будут напоминать цифру 8); направление вектора индукции в выбранной точке от обоих контуров будут противоположными. Суммарный вектор магнитной индукции окажется равным нулю. И так для всех точек поверхности вектор магнитной индукции равен нулю. Нет причин вводить какойлибо ток для *«погашения тока проводимости»*.

Л.А. Бессонов пишет [8, с 651]: «Введение в основные уравнения переменного электромагнитного поля тока смещения является заслугой Джеймса Максвелла. В 1873 г. Максвеллом была издана книга «Трактат об электричестве и магнетизме». В этой книге и был введён в электротехнические расчёты ток смещения».

Отметим, что «ток смещения» был введён в уравнения без каких-либо обоснований, если не считать желания видеть симметричную форму уравнений.

Существующая группа уравнений Максвелла представляет собой взаимно несогласованную систему уравнений. «Ток смещения» мешает совместимости уравнений.

Во многих книгах проявляется двойственность результатов в решениях поля. Например, в [8, с. 700] приводится решение векторного потенциала (ф.19.22), затем через его ротор определяют индукцию **B** (ф.19.24) и с применением первого уравнения Максвелла (ф.19.29) находят электрическое поле **E**, (ф.19.35), (ф.19.36). Прямое определения **E** через производную по времени от векторного потенциала **A** по уравнению (ф.19.10) приводит к иным результатам. «Ток смешения» не создает магнитное поле. Если бы он его создавал, то должно быть и обратное действие. То есть внешнее магнитное поле должно оказывать механическое воздействие на «ток смещения». Это действие не может проявиться, так как отсутствует носитель «тока смещения» (проводник, диэлектрик). Особым случаем является процесс распространения электромагнитных воздействий в свободном пространстве.

1.2. Распространение сигналов по двухпроводным линиям связи

Процесс распространения сигналов по двухпроводным линиям изучается в курсе «Теоретических основ электротехники», в разделе переходные процессы в электрических цепях.

Исходные дифференциальные уравнения для линии с распределенными параметрами имеют вид [2, с. 274]:

$$-\frac{\partial u}{\partial z} = r_0 i + L_0 \frac{\partial i}{\partial t} \qquad -\frac{\partial i}{\partial z} = g_0 u + C_0 \frac{\partial u}{\partial t}$$

Часто их называют «уравнениями телеграфистов». Продифференцировав одно уравнение по z другое по t, для свободного пространства, где $r_0 = g_0 = 0$, находим:

$$\frac{\partial^2 u}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2}$$
 $\qquad \frac{\partial^2 i}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 i}{\partial t^2}$, где обозначено $L_0 C_0 = \frac{1}{v^2}$

Решением этих дифференциальных уравнений являются так называемые волновые функции, представляющие собой некое распределение напряжения $u = f_1 \left(t - \frac{z}{v}\right) + f_2 \left(t - \frac{z}{v}\right)$ или тока вдоль линии и движущееся вдаль или к началу канала [8. с. 695] подобно движению корабля с его надстройками, рубкой и мачтами.

Движение начинается с подачи разности потенциалов между вводными зажимами линии и состоит из трех процессов: во-первых, под действием потенциала и поля, существующего на фронте потенциала $\vec{E} = -grad\varphi$ начинают сдвигаться заряды в проводниках, во-вторых, движение зарядов, то есть электрический ток, порождает вокруг себя поле магнитного потенциала, и в-третьих, изменение магнитного потенциала вызывает по закону электромагнитной индукции опять электрическое поле, тормозящие скорость нарастание тока. С небольшой задержкой элемент длины проводника получает заряд, а потенциал получает возможность продвинуться к следующему элементу.

Эта группа трёх процессов передвигается вдоль проводника. Глядя из середины проводника, направления вперед и назад представляются равноправными. Какое движение будет установившемся, зависит от начальных и граничных условий.

Изначально предполагается, что линия достаточно длинная, чтобы сигнал ушёл и не успел вернуться в виде отражения до своего окончания (или, что линия согласована и не имеет отражений).

Если взять в качестве примера длинной линии коаксиальный кабель, можно найти распределение электрического и магнитного потенциалов внутри кабеля. (см. 2.1.1, 2.1.2).

Разность электрических потенциалов: $\varphi_2 - \varphi_1 = u_{21} = \frac{\tau}{2\pi\varepsilon\varepsilon_0} ln \frac{r_2}{r_1}$, где τ – плотность заряда на единицу длины кабеля. По определению $C_0 = \frac{\tau}{u_{21}} = 2\pi\varepsilon\varepsilon_0 \frac{1}{ln \frac{r_2}{r_1}}$.

Магнитный потенциал $A_z(r) = \int \frac{\mu\mu_0}{2\pi r} i_z \partial r = -\frac{\mu\mu_0}{2\pi} i_z \ln r$, и разность магнитных потенциалов внутри кабеля $A_{zr2} - A_{zr1} = A_{z2,1} = -\frac{\mu\mu_0 i_z}{2\pi} ln \frac{r_2}{r_1}$ по определению $L_0 = \frac{\phi}{i} = \frac{\mu\mu_0}{2\pi} ln \frac{r_2}{r_1}$, и произведение $L_0 C_0 = \varepsilon \varepsilon_0 \mu \mu_0 = \frac{1}{v^2}$.

Первое уравнения телеграфистов $-\frac{\partial u}{\partial z} = r_0 i + L_0 \frac{\partial i}{\partial t}$ при $r_0 =$ = $g_0 = 0$ принимает вид: $\frac{\partial \varphi_{2,1}}{\partial z} = -\frac{\mu \mu_0}{2\pi} \cdot \ln \frac{r_2}{r_1} \frac{2\pi}{\mu \mu_0} \frac{1}{\ln \frac{r_2}{r_1}} \frac{\partial A_{22,1}}{\partial t} = -\frac{\partial A_{22,1}}{\partial t}$ или $-\frac{\partial \varphi_{2,1}}{\partial z} = \frac{\partial A_{22,1}}{\partial t}$ Второе $-\frac{\partial i}{\partial z} = g_0 u + C_0 \frac{\partial u}{\partial t}, \quad \frac{2\pi}{\mu \mu_0} \frac{1}{\ln \frac{r_2}{r_1}} \frac{\partial A_{22,1}}{\partial z} = -\frac{2\pi \varepsilon \varepsilon_0}{\ln \frac{r_2}{r_1}} \frac{\partial \varphi_{2,1}}{\partial t},$ то есть $-\frac{\partial A_{22,1}}{\partial z} = \varepsilon \varepsilon_0 \mu \mu_0 \frac{\partial \varphi_{2,1}}{\partial t}$ или $-\frac{\partial A_{22,1}}{\partial z} = \frac{1}{v^2} \frac{\partial \varphi_{2,1}}{\partial t}$.

Дифференциальные уравнения для потенциалов имеют тот же вид что и исходные уравнения.

Такой же вид будут иметь их решения – волновые функции распространения f₁, f₂.

Здесь есть цилиндрическая конструкция (границы), цилиндрическая симметрия, выбраны цилиндрические координаты. В

цилиндрических координатах операторы градиента и дивергенции для вектора \vec{A} имеют вид:

$$grad\varphi = \frac{\partial\varphi}{\partial r}\vec{r}^{0} + \frac{1}{r}\frac{\partial\varphi}{\partial\alpha}\vec{\alpha}^{0} + \frac{\partial\varphi}{\partial z}\vec{z}^{0} \qquad div\vec{A} = \frac{A_{r}}{r} + \frac{\partial A_{r}}{\partial r} + \frac{1}{r}\frac{\partial A_{\alpha}}{\partial\alpha} + \frac{\partial A_{z}}{\partial z}.$$

По виду найденных нами решений по последнему члену операторов можно предположить следующий общий вид при учёте всех координат

$$grad\varphi_{ind} = -\frac{\partial \vec{A}}{\partial t} \qquad div\vec{A} = -\frac{1}{v^2}\frac{\partial \varphi}{\partial t}$$

Первое уравнение представляет собой закон электромагнитной индукции в дифференциальной форме (см 2.1.3), второе показывает, что источником магнитного потенциала может быть изменение во времени электрического потенциала. Это новый взгляд. В старой электродинамике оно называлось уравнением *лоренцевой калибровки* [7. с. 244], и не имело никакого научного обоснования.

Движутся потенциалы вдоль линии, как плыли бы две ветви дерева. Одно поле электрического потенциала, скалярное, другое векторное магнитное вихревое, полученное от тока заряда ёмкости.

Физически электрическое и магнитное поля являются порождением полей потенциалов (см. 2.1.1, 2.1.2), они как листья на ветвях потенциалов.

$$E_r(r) = \frac{\partial \varphi}{\partial r} = \frac{\tau}{2\pi \cdot r\varepsilon\varepsilon_0} \qquad B_\alpha(r) = -\frac{\partial A_z}{\partial r} = \frac{\mu\mu_0}{2\pi \cdot r} \cdot i_z$$

Эти поля независимы, но связаны. Общий для полей – электрический ток. Интенсивность и электрического и магнитного поля изменяются с изменением расстояния от центра: они интенсивные (густые) ближе к центру и слабые ближе к оплётке.

Векторное произведение $[\vec{E}\vec{B}] = \vec{P}_{EB}$ (вектор Пойнтинга/Усова) определяет мощность сигнала проходящего через элементарное кольцевое сечение кабеля с текущим радиусом г. Суммарная мощность всех кольцевых сечений равна мощности передаваемой кабелем в нагрузку.

Скорость бега слоёв волн при различной их интенсивности, тем не менее, одинакова. Плывет (со скоростью света) такое облако, плотное ближе к оси и редеющее ближе к оболочке, не меняя оттенков (интенсивности) и формы. Научному сообществу необходимо определить (договориться), что участок пространства, заполненный полем разной интенсивности, является одним полем или он заполнен группой полей.

Дискриминация полей обостряется, если начать рассматривать поля в кабеле с двумя слоями изоляции (жила покрыта изоляцией иной проницаемости). Скорость распространения сигналов будет различна. Одно ли это поле? Это может стать предметом новых исследований. Опять напрашивается вывод: распространяются разности потенциалов, поля являются лишь спутниками продвижений потенциалов.

Если к началу линии будет подключен источник постоянной разности потенциалов, то по линии пробежит волна, когда она достигнет конца линии, в подключенную нагрузку в соответствии величиной разности потенциалов потечет ток. Спустя время в несколько периодов установится постоянный режим. Последующие изменения будут представлять собой наложения на ранее существовавшие режимы.

Аналогично решаются задача распространения сигналов при другой конфигурации проводников, например вертикальный провод над проводящей поверхностью (антенна) и др.

Для теории волнового распространения электромагнитных воздействий по проводам никакая дополнительная связь между \vec{E} и \vec{B} не потребовалась. (Например, уравнения из таблиц электродинамики, так называемое, уравнение Максвелла).

Здесь магнитные силовые линии, нанизаны на провода с током. Напряженность электрического поля и «токи смещения» перпендикулярны токам проводимости в проводах. Кольца, предполагаемых Максвеллом магнитных силовых линий, нанизанных на линии «токов смещения» расположены между проводами (здесь лучше представить двухпроводную линию в виде двух параллельных проводов). Их плоскости не пересекаются проводами линии.

Гипотеза Максвелла, что ток смещения порождает магнитное поле, не оправдывается, так же как гипотеза Лавуазье о существовании теплорода.

Распространение электромагнитных воздействий в пространстве не может доказать справедливость сфантазированного Максвеллом уравнения! Пример: в двухпроводных линиях; есть распространение без применения уравнения Максвелла.

Начала теории распространения электрических возмущений в пространстве вне проводников будут рассмотрены ниже.

Структура изложения электродинамики должна быть, видимо, такой.

2. НАЧАЛА НОВОЙ (ПОСТМАКСВЕЛЛОВСКОЙ) ЭЛЕКТРОДИНАМИКИ

В 1600 г (415 лет тому назад) английский врач Вильям Гильберт систематизировал известные явления по электричеству и магнетизму. Работа практического значения не имела. 230 лет назад, в 1785 г француз Шарль Кулон открыл первый закон, где люди научились проводить первые электрические измерения, что является первым признаком появления Науки. В 1800 году Вольта изобрел источник гальванического тока. В 1820 году Эрстед и Ампер дали первые описания взаимодействия электрических токов.

Практическое использование электричества и электрической энергии стало возможным только после открытия в 1831 г (всего 185 лет тому назад) английским ученым Майклом Фарадеем закона электромагнитной индукции. Благодаря этому открытию из груды железа, меди, небольшого количества бумаги и быстрого движения стало можно получать и передавать на большие расстояния тепло, свет, механическую силу и много всего другого. Возникли и стали развиваться «Теоретические основы электротехники». «Теория электромагнитного поля».

Многочисленными опытами установлено, что между двумя электрическими зарядами или токами существуют силы взаимодействия. Рассматриваемые далее математические зависимости являются результатом обработки данных многих опытов. Пространство, в котором происходит изменение тех или иных параметров принято называть полем: поле температур, поле скоростей, поле сил. На вносимый в поле сил заряд или ток действует сила. При передвижении заряда или тока производится работа. Работа по перемещению единичного заряда или элемента тока (величиной в единицу и не имеющего размерности) называется потенциалом. Понятие вводится для того, чтобы найденный однажды, часто трудным образом, потенциал мог пригодиться для расчётов с любым внесённым зарядом или током.

Например, механический потенциал шара в точках на поверхности стола одинаковый, в точках над его поверхностью он больше. Для подъёма шара на некоторую высоту требуется сила (равная силе тяжести). Сила подъёма тела конкретной массы m F = = mg_{3emnu} . Сила подъёма единицы массы m=1 определяется уравнением: $\vec{F}_1 = \vec{E}_{3emnu} = -grad\varphi_{msm} = -\vec{z}^0 g_{3emnu}$ – градиент потенциала. Поверхности равного потенциала называются эквипотенциалями. В данном случае это – плоскости, точнее сферы большого диаметра (ось z направлена вдоль радиуса земли).

2.1. Электрические и магнитные потенциалы

Источниками потенциалов являются: для электрических потенциалов электрические заряды, для магнитных потенциалов токи, а также взаимный переход одного вида потенциала в другой.

Уравнения потенциалов позволяют определить полную картину полей. Потенциалы являются носителями электрического и магнитного поля.

2.1.1. Электрический потенциал неподвижных зарядов. Электрическое поле

В пространствах занятых зарядами действует закон Кулона: $\vec{F} = \frac{1}{4\pi\varepsilon\varepsilon_0} \frac{q_1q_2}{R_{1,2}^2} \vec{r}_{1,2}$ Вектор силы направлен вдоль прямой, соединяющей точки расположения зарядов, при одинаковом знаке зарядов в сторону расталкивания.

Мы расширим пространство теории – будем предполагать, что заряды могут меняться во времени. Это легко представить, если допустить возможность перемещения части заряда в соседнюю точку пространства. В точке расположения заряда величина его оказывается переменной во времени q₁(t). В точке 2 может оказаться другой заряд любой величины.

Если ввести понятие *единичный заряд*, по величине равный единице и не имеющий размерности, формула приобретёт вид:

$$\varphi_q(t) = \frac{1}{4\pi\varepsilon\varepsilon_0} \frac{q_1(t)}{R},\tag{2.1}$$

где R расстояние от заряда до точки наблюдения (например, точке расположения второго заряда). Сама величина называется *«потенциал»*. Он представляет собой работу, которую надо совершить для переноса единичного заряда издалека в характеризуемую точку наблюдения.

Потенциал отражает **меру возможности** выполнения чего либо. Это понятие сродни информации: «шестой этаж». Понятие позволяет оценить насколько трудно будет выполнить подъём конкретных вещей на этаж или насколько будет силен удар при падении из окна этого этажа.

Электрический потенциал величина **скалярная**, не векторная, (то есть - цифра). Это свойство особенно удобно при наличии группы зарядов, так как потенциал в точке наблюдения будет просто суммой потенциалов от каждого источника по отдельности. Потенциал группы зарядов.

$$\varphi_q(t) = \frac{1}{4\pi\varepsilon\varepsilon_0} \sum_n \frac{q_n(t)}{R_n}$$
(2.2)

Если заряды распределены в пространстве с плотностью ρ, то потенциал будет равен.

$$\varphi_q(t) = \frac{1}{4\pi\varepsilon\varepsilon_0} \int \frac{\rho(t)}{R_u} dV.$$
 (2.3)

Изменение потенциала за время *dt* отражает изменение расположения (конфигурации) зарядов в пространстве за это время. (Оно является, как бы неким обобщенным током. То, что Д. Максвелл назвал «током смещения» $\frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} = \frac{1}{c^2} \frac{\partial (grad\varphi)}{\partial t}$, правда, по Максвеллу, имеет место производная *градиента* потенциала, а не самого потенциала (2.3)).

Рассмотрим пример: Диполь из положительного и отрицательного зарядов. Точку наблюдения выберем на оси диполя, не внутри диполя, а поодаль от положительного заряда. В этой точке превалирует действие положительного заряда. Если мы между зарядами диполя подключим источник переменного напряжения, то заряды будут взаимно изменяться. Потенциал в точке наблюдения будет переменным во времени. Отключим источник напряжения и начнём вращать диполь вокруг оси перпендикулярной к линии соединяющей заряды в середине диполя. Потенциал в точке наблюдения, которую предполагаем неподвижной, опять будет переменным. Теперь, сила, действующая на пробный заряд, будет менять в течение цикла ещё и направление.

Силу, действующую на единичный заряд, называют напряженностью электрического поля и обозначают \vec{E}_{a} .

$$\vec{E}_q(t) = -grad(\varphi_q(t)). \tag{2.4}$$

Градиент потенциала представляет собой функцию, которая строит из прилежащих к точке значений (например, температуры) вектор, показывающий величину и направление самого быстрого изменения обследуемой величины (в данном примере - температуры).

Изменения потенциала и напряженности электрического поля по величине и направлению являются отражением изменений и перемещений зарядов. Если изменения потенциала известны или производятся по принуждению (металлические детали), то за перемещением зарядов можно уже не следить. (Так как для заданного распределения потенциала, заряды уже разместились). Теперь не важно, где и сколько размещено зарядов, известен результат их общего действия – потенциал.

Понятие электрическое поле становится необходимым в случаях изучения причин возникновения электрических разрядов, эмиссии электронов вокруг холодных и горячих проводников, процессов ускорения заряженных частиц в укорителях и т.п.

При такой последовательности действий можно найти поле в большинстве конфигураций расположения зарядов, например, поле внутри, выше плоскости заряженного кольца (см. 3.1.5.2).

Для нахождения поля, с использованием формулы Гаусса, $\oint_{S} \bar{E} d\vec{S} = \sum q / \varepsilon_0$ требуется наличие подходящей симметрии.

Вал цунами на море, сход снежной лавины в горах представляют собой движение механического потенциала. Передней край лавины показывает скорость нарастания и продвижения потенциала, это то, что мы в теории электричества называем электрическим или магнитным полем.

На испытательных установках прочности электрической изоляции поднимают потенциал рабочего электрода. Электрическое поле в зазоре зависит от формы электрода (игла, шар). Здесь понятия потенциал и поле мысленно разделимы.

На практике в большинстве случаев используются переменные во времени потенциалы это: силовые устройства, устройства передачи информации по радиоканалам. При этом потенциал и поле (т.е. скорость изменения потенциала) тесно связаны и трудно разделимы. Например, в кругах, расходящиеся от камня, брошенного в тихую водяную гладь, текущий уровень подъема и спада 16 (например, в сантиметрах) относительно среднего уровня – это потенциал, бегущие склоны, (подъемы и спады) – это волны0. Волны могут быть быстрые и плавные при одинаковой высоте подъема (потенциале) (например, если мы будем качать воду веслом).

Работа по перемещению единичного заряда из одной точки пространства в другую определяется разностью потенциалов.

$$\varphi_1 - \varphi_2 = \int \vec{E}_q d\vec{l} = u \tag{2.5}$$

Специалисты даже электротехнических специальностей плохо представляют количественную сторону процесса. Рассмотрим простой пример: розетка электрического питания в квартире. Расстояние между штырями вилки менее 2 см, напряжение 220В, средняя напряженность электрического поля более E=220 B/2см=110 B/см=11000 B/м=11 кB/м !

Напряженность поля в воздухе для возникновения пробоя (искы, молнии) около (0,5-1) кв/мм=(500-1000) кВ/м≈1МВ/м, в 100 раз больше.

Если заряд будет не единичный, а конкретный (в кулонах), то сила, действующая на конкретный заряд q_2 :

$$\vec{F} = q_2 \vec{E}_q. \tag{2.6}$$

Работа по перемещению конкретного заряда получится в джоулях:

$$(\varphi_1 - \varphi_2)q_2 = q_2 \int \vec{E}_{q1} d\vec{l}.$$

Работа за единицу времени – мощность:

$$w = (\varphi_1 - \varphi_2)\frac{q_2}{\Delta t} = u \cdot i.$$
(2.7)

Здесь мы видим отличие нового изложения начал электродинамики от предыдущего: Как и раньше источником поля являются электрические заряды. Раньше заряд создавал электрическое поле, теперь создаёт поле электрического потенциала. Электрическое поле является градиентом потенциала. Один из ярких примеров отличия подхода является сфера с равномерно расположенным на поверхности зарядом. Расчёт потенциала дает его прямое значение как внутри, так и вне сферы (см раздел примеры потенциалов (3.1.2)). Потенциал внутри сферы равен потенциалу на поверхности снаружи. Электрическое поле внутри равно нулю, так как $\vec{E}_q = -grad(\varphi) = -grad(const) = 0$. Для определения потенциала «снаружи» через электрическое поле приходилось прибегать к рассуждениям о наличии постоянной интегрирования или наличии любой другой функции (например, функции времени), не зависящей от выбранных пространственных координат. Этим недостатком обладают все расчёты, в которых восстановление основной величины производится через известную её производную.

Ещё одним источником электрического поля является изменяющееся поле магнитного потенциала (закон электромагнитной индукции): $\vec{E}_{ind} = \frac{\partial \vec{A}}{\partial t}$ или $grad\varphi_{ind} = -\frac{\partial \vec{A}}{\partial t}$ (см. раздел 2.1.3. уравнение (2.22))

Если взять ротор от обеих частей первого равенства, то

$$rot\vec{E}_{ind} = rot\frac{\partial\vec{A}}{\partial t} = \frac{\partial(rot\vec{A})}{\partial t} = \frac{\partial\vec{B}}{\partial t}$$
(2.8)

Это уравнение с учётом издержек замены последовательности дифференцирования дополняет известный комплект формул электродинамики (с исправлением знака).

Если заряды, формирующие поле, расположены на некоторой эквипотенциальной поверхности (поверхность проводника), то вводится понятие электрической емкости – С, как отношение заряда к потенциалу проводника: $C = q/\varphi$.

Формула для определения электрической емкости устройства состоит из двух множителей: диэлектрической постоянной и конструктивной постоянной. Например, емкость единицы длины коаксиального кабеля: $C_0 = \varepsilon \varepsilon_0 \cdot (2\pi / \ln \frac{r_2}{r_1})$.

В практической электротехнике этот параметр используется в отношении к разности потенциалов:

$$q = \mathcal{C}(\varphi_2 - \varphi_1) = \mathcal{C} \cdot u. \tag{2.9}$$

Энергия, запасенная в электрической емкости, равна

$$W_{\rm g} = C u^2 / 2. \tag{2.10}$$

Электрическое поле вокруг проводника имеет, как правило, сложную форму и энергия системы может быть записана через напряженность электрического поля только для упрощенных конфигураций.

2.1.2. Магнитный потенциал подвижных зарядов. Магнитное поле

Теперь рассмотрим поле группы подвижных зарядов - электрического тока.

Надо понимать, что речь идёт не о притяжении, отталкивании зарядов между собой, а о движении группы зарядов под действием неких сторонних сил: химического, механического, теплового происхождения. Многочисленными опытами Ампера, Эрстеда в 1820 г, установлено, что между кусками магнитной руды, проводниками с электрическим током существуют силы взаимодействия. Пространства, где обнаруживаются такие взаимодействия, принято назвать магнитным полем. Это удивительное природное явление, когда взаимодействие испытывают не предметы: космические тела, корабли (гравитация), электрические заряды, а взаимодействуют исключительно движущиеся заряды; тот же проводник с теми же но неподвижными зарядами не проявляет дополнительных воздействий на другие подвижные заряды. Кажется, в природе нет других подобных явлений.

Обратим внимание на количественную сторону процесса. Заряд грозового облака составляет примерно 0,1-2 кулон при времени действия несколько сотен микросекунд. По проводнику с током 10 А, каждые 5 минут проходит заряд в 3000 кулонов.

Рис. 2

Как и в электростатике, силы пропорциональны величине тока и обратно пропорциональны расстоянию между элементами тока, Каждая точка такого пространства характеризуется векторным потенциалом.

$$d\vec{A}_1 = \frac{\mu\mu_0}{4\pi} \frac{I_1 d\vec{l}}{R_{1;2}}$$
(2.11)

19

Составляющая векторного потенциала в произвольной точке пространства, например, в точке расположения элемента второго тока от элемента первого тока имеет такое же вид, как и скалярный потенциал электрического поля, с тем отличием, что теперь это величина векторная [2. с. 342]. Направление элемента вектора потенциала совпадает с направлением элемента возбуждающего тока.

Потенциал от всей группы элементов тока первого кольца [8, с. 630]:

$$\vec{A}_{1} = \frac{\mu\mu_{0}}{4\pi} \int_{L1} \frac{Id\vec{l}_{1}}{R_{u}} = \frac{\mu\mu_{0}}{4\pi} \int_{V} \frac{\vec{j}dV_{1}}{R_{u}}$$
(2.12)

Если учесть что $\vec{j} = \rho \vec{v}_j$, то получим

$$\vec{A}_{1} = \frac{\mu\mu_{0}}{4\pi} \int_{V} \frac{\vec{j}dV_{1}}{R_{u}} = \frac{\mu\mu_{0}}{4\pi} \int_{V} \frac{\vec{v}_{j}\rho}{R_{u}} dV, \qquad (2.13)$$

сравним с (2.3): $\varphi_q(t) = \frac{1}{4\pi\varepsilon\varepsilon_0} \int \frac{\rho(t)}{R_u} dV.$

Уравнение (2.13) практического значения не имеет, из-за неизвестной скорости движения зарядов, образующих электрический ток, однако, наглядно указывает на близкое родство скалярного и векторного потенциалов.

Действительно, электрическое поле определяется расположением зарядов в некой области, а магнитное поле расположением зарядов и ещё скоростями их перемещения.

Остаётся открытым вопрос, почему законы взаимодействия статических и подвижных зарядов не является частным случаем какого-то общего закона взаимодействия зарядов.

Для областей пространства занятых зарядами и токами известно уравнение непрерывности $div\vec{j} + \frac{\partial \rho}{\partial t} = 0$ [7. с. 189]

Для областей пространства свободных от зарядов и токов в параграфе о распространении сигналов по двухпроводным линиям мы видели ещё одну возможность возбуждения магнитного потенциала – изменения скалярного потенциала.

$$div\vec{A} = -\frac{1}{v^2}\frac{\partial\varphi}{\partial t}$$
(2.14)

Это уравнение в старой электродинамике называлось уравнением *лоренцевой калибровки* [7. с. 244], и не имело никакого научного обоснования. Точки пространства с изменяющимся скалярным потенциалом являются точками истока магнитного потенциала. Здесь уместно подчеркнуть, что изменения скалярного потенциала, (а не изменения электрического поля (по Максвеллу)) являются истоками для магнитного потенциала. Опять не имеет значения, изменяется скалярный потенциал из-за движения зарядов или из-за изменения напряжения источника потенциала (опять же кого-то внутреннего движения зарядов).

Здесь важно, что точки зарождения магнитного потенциала могут быть только временными, после установления стационарного состояния $d\varphi/dt = 0$ исчезают истоки магнитного потенциала. Это говорит о том, что этот процесс может существовать в режиме распространения электромагнитных сигналов – радиоволн.

Этот переход можно назвать законом магнитоэлектрической индукции.

Принято говорить, что оператор *div* сообщает об истоках чего либо. В данном случае мы видим, что для зарождений векторного потенциала *A*, кроме токов можно иметь изменение скалярного потенциала. Можно представить кондитерский шприц. Изменение скалярного потенциала – скорость движение поршня, выдавленное количество крема – количество векторного потенциала. Распределение векторного потенциала по направлениям не имеет значения (дивергенция – скаляр).

Если представить маятник с заряженным шаром, проносящимся над компасом, то мы должны увидеть, что стрелка компаса отклонилась. Это картина аналогична движению проводника между полюсами магнита.

Если записать это уравнение иначе: $div\vec{A} + \frac{1}{v^2}\frac{\partial\varphi}{\partial t} = 0$, то можно трактовать событие иначе, а именно, что в каждой точке пространства имеется что-то положительное и что-то отрицательное, в сумме ничего нет! Это напоминает процесс обмена энергиями в колебательном контуре, когда электрическая энергия конденсатора переходит в магнитную энергию катушки индуктивности в сумме оставаясь неизменной, постоянной (в частном случае нулевой) [2. с. 113].

Ведь и в атоме вещества нет заряда, пока мы не замечаем, что положительные и отрицательные заряды кочуют в обнимку. Но атом, молекула – вещество, а здесь пустота! Получается, что пустота это не пустота, а носитель потенциалов (может, всё же, существует «эфир»?).

Для вычисления сил взаимодействия удобно ввести понятие **магнитное поле** тока:

$$\vec{B} = rot\vec{A}.$$
 (2.15)

При таком определении магнитного поля и магнитного потенциала будем иметь

$$div\vec{B} = 0, \qquad (2.16)$$

(поскольку дивергенция ротора по правилам векторного анализа равна нулю). В этом случае говорят, магнитное поле (не магнитный потенциал) не имеет истоков.

В векторном поле токов роль градиента потенциала играет ротор (rot) вектора. Операторы градиент и ротор определяют величину электрического и магнитного поля через их потенциалы.

Здесь мы видим отличие нового изложения начал электродинамики от предыдущего. Раньше ток создавал магнитное поле, теперь он создаёт магнитный потенциал. Магнитное поле является ротором магнитного потенциала. Один из ярких примеров отличия подхода - тороидальная катушка индуктивности или длинный соленоид. Ток создает магнитный потенциал и внутри катушки и снаружи. Магнитное поле существует только внутри катушки, снаружи это поле равно нулю; аналогично тому, как равно нулю электрическое поле внутри равномерно заряженной сферической поверхности.

Поток вектора магнитного поля **В** через заданную поверхность называется магнитным потоком $\Phi = \int_{c} \vec{B} d\vec{s}$.

Аналогично электрическому полю для сред с линейной зависимостью намагниченности среды от тока для магнитного поля получим: $\Phi = L \cdot i$, и часто используемые в технической практике

Формула для определения индуктивности состоит из двух множителей: магнитной постоянной и конструктивной постоянной. Например, для единицы длины коаксиального кабеля $L_0 = \mu \mu_0 \bullet (\frac{1}{2\pi} \cdot ln \frac{r_2}{r_1})$. В простых конструкциях конструктивный множитель одинаковый для емкости и индуктивности, только входит либо в числитель, либо в знаменатель основной формулы. Иначе говоря, $L_0C_0 = \varepsilon\varepsilon_0\mu\mu_0 = \frac{1}{v^2}$. Видим, что зная емкость или индуктивность участка конструкции, можно без подробных расчетов определить другую величину.

Сила, испытываемая элементом второго тока от поля, создаваемого внешними токами:

$$d\vec{F}_2 = I_2[d\vec{l}_2, rotA_1] = I_2[d\vec{l}_2, \vec{B}_1], \qquad (2.18)$$

Формулы, определяющие магнитный потенциал или магнитное поле одиночного подвижного заряда, движущегося со скоростью v, выведены Льенаром и Вихертом. Обратное действие представлено формулой Лоренца:

$$d\vec{F} = q \cdot [\vec{v} \cdot \vec{B}] \tag{2.19}$$

2.1.3. Закон электромагнитной индукции (дифференциальная форма). Взаимный переход скалярного электрического и векторного магнитного потенциалов

Закон электромагнитной индукции является третьим столпом фундамента электродинамики. Закон гласит: Для любого контура индукционная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур, взятой со знаком минус.

Сделаем несколько замечаний:

1) Основная часть потока магнитной индукции обычно сосредоточена в небольшой части площади контура. Например, в витке обмотки трансформатора поток сосредоточен в основном в площади сечения сердечника. Виток можно сильно увеличить, ЭДС витка останется прежней.

2) Знак минус в уравнении закона обосновывается наличием правила Ленца. Это обоснование выглядит так: «и представилось мне»! Математической формулы нет.

3) Формулу $rot \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ часто называют дифференциальной формой закона электромагнитной индукции. Однако, знание ротора вектора **B** никак не позволяет получить значение самого вектора **E**.

Проведем преобразование ЭДС_{*ind*} = $\frac{d\Phi}{dt}$ =

$$= \frac{\partial}{\partial t} \oint_{S} \vec{B} \, d\vec{s} = \frac{\partial}{\partial t} \oint_{S} rot \vec{A} d\vec{s} = \frac{\partial}{\partial t} \oint_{L} \vec{A} d\vec{l} = \oint_{L} \frac{\partial \vec{A}}{\partial t} d\vec{l} = \oint_{L} \vec{E}_{ind} d\vec{l} \quad (2.20)$$

(В третьем и четвертом знаках равенствах (знак =) использованы $\vec{B} = rot \vec{A}$ и теорема Стокса). При равенстве интегралов, равны подынтегральные выражения.

$$\vec{E}_{ind} = \frac{\partial \vec{A}}{\partial t} \tag{2.21}$$

Совпадает с одним из выражений «таблицы формул Фейнмана».

Это и есть закон электромагнитной индукции в дифференциальной форме: Закон отражает связь изменений магнитного потенциала с напряженностью электрического поля.

Закон электромагнитной индукции <u>для произвольной точки</u> <u>пространства</u> может быть сформулирован следующим образом: «временные изменения векторного магнитного потенциала создают электрическое поле *E*_{ind}, называемое индукционным или электромагнитным».

При таком подходе обнаруживается <u>единый принцип</u> нескольких опытов Фарадея (движение проводника в магнитном поле и неподвижный проводник в переменном магнитном поле (трансформатор)). О них пишет Фейнман [4, с. 53]. «Мы не знаем в физике ни одного другого такого примера, когда бы простой и точный общий закон требовал для своего настоящего понимания анализа в терминах двух разных явлений. Обычно столь красивое обобщение оказывается исходящим из единого глубокого основополагающего принципа. Но в этом случае, какого либо особо глубокого принципа не видно. Мы должны воспринимать «правило» как совместный эффект двух совершенно различных явлений».

Теперь общий принцип есть – меняющийся во времени магнитный потенциал. Временные изменения потенциала наступают, и когда заряд (проводник) перемещается в неравномерном поле векторного потенциала, и когда проводник неподвижен, а потенциал создан переменным током.

Закон электромагнитной индукции в дифференциальной форме демонстрирует связь магнитного потенциала со скалярным:

$$\vec{E}_{ind} = -grad\varphi_{ind} = \frac{\partial \vec{A}}{\partial t}$$
(2.22)

Обозначение $\vec{E}_{ind} = -grad\varphi_{ind}$ введено впервые.

Закон Фарадея <u>для контура</u> $\Im \square C_{ind} = \frac{\partial \Phi}{\partial t}$ не является дифференциальной формой уравнений электродинамики, так как производная берётся не от векторов электрического или магнитного полей.

Переход электрического потенциала в магнитный был представлен в предыдущем разделе уравнением (2.14). $div\vec{A} = -\frac{1}{v^2}\frac{\partial\varphi}{\partial t}$

2.1.4. Полное электрическое поле. Работа сил поля

Полное электрическое поле равно сумме двух электрических полей: поля электрических зарядов и поля индукционного, рожденного изменениями магнитного потенциала.

$$\vec{E} = \vec{E}_q + \vec{E}_q(t) - \vec{E}_{ind}(t) = -grad\varphi_q - \frac{\partial \vec{A}}{\partial t} \qquad (2.23)$$

Оба поля представляют первые производные потенциалов в пространстве и времени.

В свою очередь напряженность электрического поля, обусловленная зарядами, может быть постоянной, определяемой зарядами неизменными во времени или переменной от меняющихся зарядов.

Работа сил по перемещению зарядов и потенциал будет суммой работ поля зарядов и поля, рожденного изменениями магнитного потенциала. Для внешнего заряда q_2 эти два поля не различимы. Работа сил поля:

$$W = q_2 \int_1^2 (\vec{E}_q - \vec{E}_{ind}) d\vec{l}.$$
 (2.24)

Однако, поле зарядов потенциальное, второе нет. Поэтому на замкнутом пути работа поля зарядов будет равна нулю, а поля, рожденного изменениями магнитного потенциала, может принимать любое значение.

Общий потенциал точки пространства представляет собой сумму скалярных потенциалов: $\varphi = \varphi_q + \varphi_{ind} = \varphi_{q/const} + \varphi_q(t) + \varphi_{ind}(t)$ зарядов и скалярного потенциала рожденного изменениями магнитного потенциала. Требуются дополнительные толкования. (Например, каковы отличия потенциала обусловленного переменной частью зарядов и потенциала, обусловленного изменениями магнитного потенциала).

2.2. Система согласованных уравнений электродинамики

Для характеристики полей используется аппарат векторного анализа. Его главной особенностью является возможность записи физических закономерностей инвариантно относительно систем координат. В дальнейшем при конкретных расчетах могут быть выбраны и применены удобные для данного конкретного случая координаты: декартовы, цилиндрические, сферические. Всё всегда относится к параметрам и характеристикам точки поля.

В теории электричества мы используем векторные операторы. Их три: градиент $grad\varphi$, дивергенция $div\vec{A}$ и ротор $rot\vec{A}$. Все они являются по-существу просто операторами дифференцирования и после выбора системы координат сразу по всем трём ортогональным осям.

Оператор градиент работает над скалярными функциями. Примеры: поле температур, плотности вещества, густота тумана. Результатом будет вектор. Вектор - градиент показывает в последнем случае быстроту и направление увеличения плотности тумана, то есть формируется векторное поле на основе скалярного.

Другие два оператора работают над векторными полями.

Оператор дивергенции (самый сложный для понимания) вычисляет простую (не векторную) сумму скоростей изменения вектора по ортогональным координатам в данной точке. Результат – скаляр. Говорят, что ненулевое значение дивергенции свидетельствует о наличии источника изменений обследуемого вектора.

Если применить оператор к полю скоростей движения тела, то величина дивергенции покажет сумму изменений скоростей по всем направлениям движения тела. Изменение скорости может происходить, если на движущееся тело действует сила, есть источник энергии. Если оператор применить к анализу скорости полёта ракеты, то он покажет причину изменения скорости полёта (набора скорости, поворота – работают двигатели).

Результат работы оператора ротора есть вектор. Если исследуемый вектор поля (например, вектор скоростей) совместить с одной из координатных осей, то при наличии изменений вдоль второй координаты, вектор – результат будет направлен вдоль третьей координаты и будет показывать наличие этих изменений. Приведём механическую иллюстрацию функции ротора. Применительно к скоростям точек «волчка – юлы», выбрав цилиндрические координаты и направление скорости совпадающим с направлением координаты α, получим изменение величины скорости вдоль радиус-вектора *r*, вектор-результат будет перпендикулярен двум первым векторам и покажет скорость и направление оси вращения волчка. Для всех точек ответ будет один и тот же! Если ось волчка будет прецессировать, то будет прецессировать и вектор векторного потенциала. Если оператор ротора применить к скоростям частиц чая в помешиваемом стакане чая, то векторы угловой скорости в центре стакана и ближе к стенкам будут разными.

Таблица формул электродинамики должна иметь иной вид (таблица 2).

Таблица 2

Перечень согласованных уравнений
электродинамики
Потенциалы электродинамики

$$\varphi(x, y, z, t) = \int \frac{\rho}{\varepsilon_0} \frac{(t - r_{X\rho}/c)}{4\pi \cdot r_{X\rho}} dV_{\rho}$$

 $\vec{A}(x, y, z, t) = \int \mu_0 \cdot \vec{j} \frac{(t - r_{Xj}/c)}{4\pi \cdot r_{Xj}} dV_j$
уравнения связи потенциалов
 $\frac{\partial \vec{A}}{\partial t} = -grad\varphi_{ind}.$ $\frac{1}{c^2} \frac{\partial \varphi}{\partial t} = -div\vec{A}.$
Поля - производные потенциалов.
 $\vec{E}_q = -grad\varphi_q$, $\vec{E}_{ind} = \frac{\partial \vec{A}}{\partial t},$
 $\vec{E} = \vec{E}_q - \vec{E}_{ind}$, $\vec{B} = rot\vec{A}.$
и дополнительные уравнения.
 $div\vec{E} = -\nabla^2 \varphi - \frac{1}{v^2} \frac{\partial^2 \varphi}{\partial t^2}, \quad rot\vec{E} = \frac{\partial \vec{B}}{\partial t},$
 $div\vec{B} = 0, \quad rot\vec{B} = -\nabla^2 \vec{A} - \frac{1}{v^2}grad \frac{\partial \varphi}{\partial t}.$
 $X(x, y, z) - точка наблюдения$

В уравнениях этой таблицы отсутствует «ток смещения» и само уравнение Максвелла.

Пространственные изменения электрического потенциала воспринимаются как электрическое поле $\vec{E}_q = -grad\varphi_q$. (Например, в системе декартовых координат будем иметь $E_{qx} = -\frac{\partial \varphi_q}{\partial x}$, $E_{qy} = -\frac{\partial \varphi_q}{\partial y}$, $E_{qz} = -\frac{\partial \varphi_q}{\partial z}$; или в системе цилиндрических координат, при наличии цилиндрической симметрии, то есть при отсутствии зависимости параметров поля от угла α , будем иметь $E_{qr} = -\frac{\partial \varphi_q}{\partial r}$, $E_{qz} = -\frac{\partial \varphi_q}{\partial z}$).

Поле напряженности электрического поля является производной потенциалов в прямом и переносном смысле слова.

Пространственные изменения магнитного потенциала воспринимается как магнитное поле $rot\vec{A} = \vec{B}$, (Например, в системе цилиндрических координат при наличии цилиндрической симметрии, для вектора \vec{A} будем иметь:

$$rot_{\alpha}\vec{A} = \frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} = B_{\alpha}, \qquad rot_r\vec{A} = -\frac{\partial A_{\alpha}}{\partial z} = B_r,$$
$$rot_z\vec{A} = \frac{1}{r} \Big[\frac{\partial}{\partial r} (rA_{\alpha})\Big] = B_z \).$$

Некоторые уравнения требуют уточнений индексов потенциалов: φ , φ_q , φ_{ind} .

<u>Временные изменения</u> векторного магнитного потенциала воспринимается, как электрическое поле $\frac{\partial \vec{A}}{\partial t} = \vec{E}_{ind}$. Вектор напряженности электрического поля направлен вдоль вектора магнитного потенциала **A**, например, *z* – составляющая $E_{ind,z} = \frac{\partial A_z}{\partial t}$; в кабеле оказывается перпендикулярным к основному электрическому полю зарядов.

В источниках электрического поля $div\vec{E}$ появился член, дополняющий плотность зарядов: $\varepsilon_0 \frac{\partial}{\partial t} div\vec{A}$. Точками роста электрического поля являются не только рассыпанные заряды, но точки пространства, в которых есть и изменяется во времени дивергенция магнитного потенциала и

$$div\vec{E} = -\nabla^2\varphi + \left(\frac{\partial}{\partial t}div\vec{A}\right) = \frac{\rho}{\varepsilon_0} - \frac{1}{\nu^2}\frac{\partial^2\varphi}{\partial t^2}.$$

Аналогично, потенциал магнитного поля возникает в точках пространства не только от удаленных токов проводимости j, но и от быстрых изменения скалярного электрического потенциала φ в этих точках: $div\vec{A} = -\frac{1}{v^2} \frac{\partial \varphi}{\partial t}$.

Вихри магнитного поля $rot \vec{B} =$ проистекают тоже от двух источников. Если вид функций разрешает изменять последовательность дифференцирования по координатам и времени, то

$$rot\vec{B} = -\nabla^{2}\vec{A} + (graddiv\vec{A}) = \mu_{0}\vec{j} - \frac{1}{\nu^{2}}grad\frac{\partial\varphi}{\partial t} = \\ = \mu_{0}\vec{j} - \frac{1}{\nu^{2}}\frac{\partial}{\partial t}grad\varphi.$$

В свою очередь, скалярный потенциал формируется зарядами и изменениями магнитного потенциала. Если заряды постоянны, то остаётся скалярный потенциал, рожденный изменениями магнитного потенциала (2.22), и действующей оказывается его переменная составляющая:

$$rot\vec{B} = \mu_0\vec{j} + \frac{1}{\nu^2}\frac{\partial\vec{E}_{ind}}{\partial t}$$

Это новое уравнение закона полного тока содержит дополнительный член, вклад которого пропорционален скорости изменений происходящих процессов.

Вместо плотности «тока смещения», зарядов $\frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$, введенного Максвеллом, присутствует иной ток $\frac{1}{c^2} \frac{\partial \vec{E}_{ind}}{\partial t}$, рожденный <u>изменени-ями</u> потенциалов.

И электрическое и магнитное поле не есть материальные субстанции, они являются <u>пространственными</u> скоростями изменения (крутизной склонов, завихрениями) своих потенциалов или скоростями изменения потенциалов во времени.

Поля \vec{E} и \vec{B} обеспечивают лёгкую запись силовых воздействий на заряды и токи возле точки наблюдения.

Теперь можно ответить на вопрос, поставленный в начале. Длинный соленоид и тороид относятся к таким конфигурациям источника потенциала, в которых пространственные изменения потенциала во внешней области отсутствуют $rot \vec{A} = \vec{B} = 0$, а временные изменения определяются законом изменения тока, создающего потенциал.

Изменение формул электродинамики приведёт к изменению теории поля, теории распространения радиоволн, изменению теории антенн, остальная часть теоретических основ электротехники останется практически неизменной, разве что, в теории электрических машин термин «вращающееся магнитное поле» следует заменить на термин: «вращающееся поле магнитного потенциала».

Размерность векторного потенциала А $\frac{V \cdot s}{m} = \frac{B \cdot c}{M}$, Индукции $\vec{B} = rot \vec{A} \frac{V \cdot s}{m^2} = \frac{B \cdot c}{M^2}$, Такую же размерность имеет дивергенция, так как представляет такую же производную векторного потенциала по пространственным координатам.

Отдельные разделы должны быть отведены электрическим полям в диэлектрической и проводящей средах и магнитным полям в магнитных средах. Особые свойства должны иметь магнитные поля, образованные группами <u>кольцевых</u> микротоков (постоянные магниты).

2.3. Источники электрических и магнитных потенциалов

На рисунке 3 представлены основные явления электродинамики, показано их соподчинение.

Список приведенных явлений, конечно, может быть расширен. Мы видим три основных вида получения электрических зарядов и потенциалов. Эти слова противоречат известному постулату: электрические заряды не возникают и не исчезают. В природе нет фактов опровергающих этот постулат! Противоречие снимается, если мы вспомним, что в природе заряды существуют парами из положительных и отрицательных зарядов, например, протоны и электроны, ионы. На расстояниях, превышающих размеры такого диполя, пара представляется наблюдателю нейтральной.

Истоки и взаимосвязь явлений электродинамики

Рис. 3

Существует ряд физических явлений, когда положительные и отрицательные заряды на время раздвигают на значительные расстояния. Это:

1) трение частиц материи. В результате, скопление разделённых малых зарядов может составлять большой заряд, занимать большие площади и объемы. Со временем заряды объединятся медленно или быстро (гроза),

2) химическое, фото, термо разъединение зарядов, формирование разности электрических потенциалов («сторонние ЭДС») и

3) явления, благодаря которым, электричество вошло в практическую жизнь. Они представлены в правой нижней части рисунка. Это – пребывание проводника в поле переменного магнитного потенциала – закон Фарадея в дифференциальной форме (ЮС Черкашин). Здесь образуется, как бы замкнутый круг - изменения магнитного потенциала вызывают электрическое поле, электрическое поле в проводниках вызывает движение зарядов, то есть электрический ток, а последний порождает магнитный векторный потенциал.

Передвижение проводника в поле потенциала может сопровождаться механической работой. Происходит преобразование механической энергии в электрическую и обратно. В этом круге может циркулировать энергия больших уровней (электродвигатели, электростанции).

Явлений, в которых изменения электрического поля зарядов, но не потенциала, вызывают появление магнитного поля, не существует. Уравнение Максвелла ложно. Равенство, задающее связь, указанных в уравнении величин неверно. На практике нет фактов подтверждающих это равенство. Факт распространения электромагнитных воздействия не может являться подтверждением равенства.

В проводящей среде электрическое поле вызывает движение электрических зарядов – электрический ток. В максвелловской электродинамике это поле изучалось несколько абстрактно как самостоятельное поле. Об этом говорит, например, название параграфа: «Аналогия между электростатическим полем в диэлектрике и электрическим полем в проводнике» [2, с. 335]. В обоих случаях мы имеем дело просто с электрическим полем. В проводящей среде заряды имеют свободу перемещения, двигаясь, они аннигилируют, и поле быстро исчезает. Если имеет место постоянная разность **32** потенциалов (поддерживаемая химической реакцией, термо, фото процессами или «выпрямлением» разности переменных потенциалов) то её порождением является постоянное электрическое поле и постоянный электрический ток. Не требуется никаких слов о аналогии.

Отметим еще один неожиданный феномен. Представим теплый камень, чайник, помещенные с вакуум; они будут остывать, как мы говорим, путём излучения, путём инфракрасного электромагнитного излучения. Теория термодинамики удивительным образом объединяется с теорией электродинамики.

Пробуем сделать количественную оценку.

Проследим за охлаждением чайной ложки воды 4 гр, нагретой до 50 градусов, тепловая энергия воды 200 кал. В системе СИ 200кал * 4,2Дж/кал = 840 Дж. При времени охлаждения 10 мин = 600сек получим мощность охлаждения 840/600=1,4 Вт. На расстоянии 0,5 м, где площадь сферической поверхности составит: $4\pi R^2=3,1 M^2$. Удельная уходящая тепловая мощность будет 1,4 Вт/3,1 $M^2=0,45$ Вт/ M^2 .

Теперь мы поинтересуемся напряженностью электрического поля.

Известно, мощность сил электрического поля, отнесенная к единице площади – вектор Умова-Пойнтинга [8, с.370] $\vec{P}_{_{3M}} = \begin{bmatrix} \vec{E}\vec{H} \end{bmatrix}$. Для плоской падающей волны удельная мощность $p_{_{3M}} = E_n^2/z_e$. [8, с. 391], где $z_e = 376 \cdot Om$.

Напряженность электрического поля инфракрасного излучения (длина волны около 10 мкн) составит $0,45=E^2/376$. $E=(0,45*376)^{1/2}=13$ B/M = 0,13 B/cm.

Отметим попутно, энергия, которую можно получить при охлаждении бочки воды (200 литров) на 10 градусов составит 2 мегакалории или 8,4 мегаджоуля, или 2,33 кватчаса.

Такое количество энергии содержат 0,25 литра бензина.

О энергии поля. Камень, поднятый над землёй, имеет потенциал с точностью произвольной постоянной величины, то есть потенциал неудобный для практического использования. Практически интересна разность потенциалов. Смена положения камня может происходить при совершении работы, с изменением энергии системы. Если камень может свободно перемещаться, падать, то его потенциальная энергия может переходить в кинетическую, тепловую и др. виды энергии. Всё сказанное относится к потенциалу электрического заряда и магнитному потенциалу тока.

Водохранилище – это контейнер, в котором некая масса воды поднята на высоту. При падении с высоты происходит преобразование потенциальной энергии в кинетическую, а затем при наличии турбин и электрогенератора в электрическую.

В области электричества подобными контейнерами являются конденсатор и катушка индуктивности. «Заряженные» они являются хранителями энергии.

Электрический аккумулятор не является в чистом виде хранителем электрической энергии. Это скорее преобразователь электрической энергии в химическую (гальвано процесс) и обратно.

2.4. Излучение и распространение потенциалов

Волновая зависимость потенциалов от расстояния и времени (аргумент функций $(t - r_{x\rho}/c)$) определяет то, что с возникновением в некоторой точке пространства, исчезновением или изменением источника (заряда или тока) от этой точки начинает распространяться изменение потенциала [4, с. 120, 145, 149]. Очевидно, что это продвижение происходит со скоростью света.

Два уравнения связи электрического и магнитного потенциалов

$$grad \varphi_{ind} = -\frac{\partial \vec{A}}{\partial t}$$
 $div \vec{A} = -\frac{1}{v^2} \frac{\partial \varphi}{\partial t}$

показывают на возможность излучения и распространение потенциалов в свободном пространстве. Так оба процесса при отсутствии зарядов и токов, переходя один в другой, обеспечивают распространение электромагнитных воздействий в свободном пространстве.

Рассмотрим пример возможности распространения в одном направлении - z. Операторы $grad\varphi$ и $div\vec{A}$ имеют вид:

 $grad\varphi = \frac{\partial \varphi}{\partial r}\vec{r}^{0} + \frac{1}{r}\frac{\partial \varphi}{\partial \alpha}\vec{\alpha}^{0} + \frac{\partial \varphi}{\partial z}\vec{z}^{0} \quad \text{м} \quad div\vec{A} = \frac{A_{r}}{r} + \frac{\partial A_{r}}{\partial r} + \frac{1}{r}\frac{\partial A_{\alpha}}{\partial \alpha} + \frac{\partial A_{z}}{\partial z}$

Выделяя члены с изменениями по *z*, подставляя в уравнения связи потенциалов,

получим:
$$\frac{\partial \varphi_{ind}}{\partial z} = -\frac{\partial A_z}{\partial t}$$
 $\frac{\partial A_z}{\partial z} = -\frac{1}{v^2} \frac{\partial \varphi_{ind}}{\partial t}$.

Выделение индукционной составляющей определено тем, что она входит в виде основой в первое уравнение и в качестве составной части во второе уравнение. Продифференцировав ещё раз одно уравнение по z, другое по t, найдем:

$$\frac{\partial^2 \varphi_{ind}}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 \varphi_{ind}}{\partial t^2}$$

Это волновое уравнение для скалярного потенциала φ_{ind} . Аналогичное уравнение получается для магнитного потенциала. Их решения – волновые функции распространения [8. с. 695].

Ещё пример. Плоские волны. Как круги от поплавка на гладкой воде. Симметрия остаётся цилиндрической. Распространение возмущений теперь будет происходить по радиусу. И теперь важен первый член операторов grad φ и div \vec{A} , то есть $\frac{\partial \varphi}{\partial r}$ и $\frac{1}{r}A_r + \frac{\partial A_r}{\partial r}$.

Подставляя в уравнения связи потенциалов, получаем $\frac{\partial \varphi}{\partial r} = -\frac{\partial A_r}{\partial t}, \quad \frac{1}{r}A_r + \frac{\partial A_r}{\partial r} = -\frac{1}{v^2}\frac{\partial \varphi}{\partial t}.$ Дифференцируя первое по *r* второе по *t*, получим: $\frac{\partial^2 \varphi}{\partial r^2} = -\frac{\partial^2 A_r}{\partial t \partial r}, \qquad \frac{1}{r}\frac{\partial A_r}{\partial t} + \frac{\partial^2 A_r}{\partial r \partial t} = -\frac{1}{v^2}\frac{\partial^2 \varphi}{\partial t^2}$ и исключая член $\frac{\partial^2 A_r}{\partial t \partial r}$ с учетом первого из этих четырёх уравнений, найдём: $\frac{1}{r}\frac{\partial \varphi}{\partial r} + \frac{\partial^2 \varphi}{\partial r^2} = \frac{1}{v^2}\frac{\partial^2 \varphi}{\partial t^2}.$ Это волновое уравнение для скалярного потенциала в цилиндрических координатах.

Дифференцируя первое по *t* второе по *r*, найдём $\frac{\partial^2 \varphi}{\partial r \partial t} = -\frac{\partial^2 A_r}{\partial t^2}$, и $-\frac{A_r}{r^2} + \frac{1}{r}\frac{\partial A_r}{\partial r} + \frac{\partial^2 A_r}{\partial r^2} = -\frac{1}{v^2}\frac{\partial^2 \varphi}{\partial t \partial r}$, и с учётом первого получим: $-\frac{A_r}{r^2} + \frac{1}{r}\frac{\partial A_r}{\partial r^2} + \frac{\partial^2 A_r}{\partial r^2} = \frac{1}{v^2}\frac{\partial^2 A_r}{\partial t^2}$. Это волновое уравнение для радиусной составляющей вектора магнитного потенциала.

Двух новых уравнений связи потенциалов «достаточно», чтобы показать возможность распространения (движения) электромагнитных процессов; так же как добавление «тока смещения» в уравнение Максвелла позволяет показать возможность распространения электрического и магнитного полей. Условие «необходимости» требует проведения отдельного доказательства в обоих случаях.

Рассмотрим пример: распространение звука в сплошной среде – газе.
В каждой точке пространства газ характеризуется плотностью р [кг/м³], давлением в элементе объёма [н/м²] и скоростью движения. Р.Фейнман приводит уравнение связи этих величин [15. с. 236]. $\frac{\partial \rho}{\partial t} = -div(\rho \vec{v})$. Уравнение предполагает сохранение массы элемента объёма газа. Однако, предположив несжимаемость среды – ρ =const, он отложил решение этого уравнения. Мы, напротив, рассмотрим некоторые свойства. Вспомним уравнение состояния совершенного газа – уравнение Клапейрона [16 с. 4] $p = \rho RT$, где R газовая постоянная Дж/кгК, T – абсолютная температура. И уравнение приобретает вид: $\frac{1}{RT} \frac{\partial p}{\partial t} = -div(\rho \vec{v})$.

Сравнивая его с нашим вторым уравнением связи потенциалов, видим, что роль потенциала φ играет давление р, что интуитивно очень понятно, а в роли векторного потенциала \vec{A} выступает произведение ($\rho \vec{v}$). (В определении векторного потенциала ρ - плотность зарядов, здесь ρ плотность воздуха). В роли квадрата скорости с² выступает произведение RT. Его значение для воздуха при 20 градусах C⁰: 287,1*293=(290 м/с)².

При такой аналогии первое уравнение связи потенциалов будет выглядеть так: $\frac{\partial(\rho \vec{v})}{\partial t} = -grad(p)$. Доказательства применимости этой формулы для заданной конфигурации задачи мы не знаем, пользуемся только аналогией.

В механике имеет место понятие "импульс тела", "удар тела", "импульс масс", которое представляет собой произведение массы тела на скорость $m\vec{v}$. Для тел с распределенной массой, для сплошных сред можно ввести понятие: **импульс плотности масс** $\rho\vec{v}$. Уравнение показывает, что изменение плотности или скорости «движения элемента плотности» происходит на границе смены давлений (порыв ветра).

Для электричества получим: "импульс плотности заряда" $\rho \vec{v} \Leftrightarrow \vec{A}$. (векторный магнитный потенциал).

При изучении распространения звука в одном направлении -(труба) вдоль оси z получим $\frac{\partial(\rho v_z)}{\partial t} = -\frac{\partial p}{\partial z}$, $\frac{1}{RT}\frac{\partial p}{\partial t} = -\frac{\partial(\rho v_z)}{\partial z}$. Дифференцируя первое уравнение по z, второе по t и исключая подобные члены, получим волновое уравнение для p: $\frac{\partial^2 p}{\partial z^2} = \frac{1}{RT}\frac{\partial^2 p}{\partial t^2}$. Решением его будут волновые функции. Функция заданная на входе – гудок, свист, крик будет распространяться вдоль трубы в исходном виде. Наглядную интерпретацию можно получить, если представить длинную пружину сжатия (с витками, намотанными в разрядку). После резкого сжатия или удара по торцу часть витков сблизится, уплотнится, и это уплотнение будет распространяться вдоль пружины. Побежит волна сжатия. Замечательным является то, что часть массы пружины не летит вдоль оси (как пуля), а распространяется только изменённая плотность участка пружины, витки сближаются, но не улетают вслед за областью сжатия.

Если воздействие на торец пружины будет иметь колебательный характер, то в движение будут вовлекаться всё более дальние участки пружины, сама пружина в целом будет оставаться на месте, являясь проводником энергии.

Явление распространения волн заключается в вовлечении в процесс изменений (колебаний) новых участков упругой среды. Энергия расходуется только на «раскачку» новой волны.

Если встретится граница-препятствие, то установится стационарный колебательный (не бегущий) процесс, не требующий расхода энергии.

Поверхность, поглощающая колебания или отражающая их куда-то в сторону (зеркало) не «видна» со стороны источника колебаний (локатора).

Ещё более наглядное представление можно получить, если представить желоб заполненный водой. Эта конструкция имеет иную структуру: здесь среда распространения колебаний несжимаемая, однако, имеется возможность менять размер участка среды за счёт местного подъема уровня жидкости (гребня). В результате для описания процессов мы, видимо, получим те же самые векторные уравнения.

Если мы теперь будем в начале желоба в первом случае поднимать и опускать руку над дном, и тем самым менять потенциал участка воды, во втором случае отгонять воду от торца, придавая скорость (сообщая кинетическую энергию) этой части воды вдоль жёлоба, то в обоих случаях вдоль желоба побежит возмущение или возникнут волны в зависимости от периодичности возмущений и границ области возмущений.

Это в точности совпадает с представлением, когда мы подключаем электрический кабель к источнику напряжения или тока, обеспечивая возбуждение электрического или магнитного потенциала. Мы видим попеременный переход в каждой точке пространства потенциальной энергии напряжения, сжатия, давления, подъема в энергию движения элементарной области среды с плотностью р и скоростью \vec{v} .

Аналогично радиоволны и звук распространяется по другим координатам. В пространстве все направления одинаковы. Форма факела луча будет зависеть от устройства источника потенциала: диполь, радиоантенна, клаксон автомобиля, рупор.

В ближнем пространстве, распространение определяется формой и видом границ области излучения: труба, радиотелескоп, резонатор и др. В кабеле движение потенциалов, обрамленное кромками электрического и магнитного полей, вызывает токи в проводах кабеля.

В открытом пространстве поле потенциала и связанные с ним электрические и магнитные поля, достигают границы раздела двух сред, в новой среде возникают смещение связанных зарядов или токи, которые создают новую картину поля потенциалов и других полей - отражение.

И электрические потенциалы, и давление воздуха распространяются в изотропной среде волновым образом (без изменения облика, рисунка поля) и с ними распространяются поля. Диаграмма «направленности» поля потенциала определяет диаграмму направленности электрического и магнитного полей. Потенциалы играют первичную роль. Электрическое и магнитное поля не самостоятельны. Они являются просто характеристикой скорости изменения потенциалов.

«Гидродинамические уравнения очень часто оказываются аналогичными уравнениям электродинамики» [4. с. 236]. Такая глубокая аналогия возвращает нас к мысли о возможности существования «Эфира», которым пропитана вся наша Вселенная.

«Эфир» и радиоволны соотносятся так же, как воздух и звук. Мы говорим о распространении колебаний в упругой среде. Среда является проводником энергии, (как карданный вал в автомобиле). Для звука – механическая упругая среда, для электричества – электрическая упругая среда єє₀, µµ₀. Мы живем одновременно более чем в двух средах: воздушная среда с определённым составом газов, гравитационная среда и др. С выходом из гравитационной среды (космонавты) мы теряем возможность ходить. В механике в упругой среде взаимодействуют давление, плотность масс, в электричестве потенциалы и плотность зарядов, и хотя энергия и силы взаимодействия измеряются в одинаковых единицах, других параметров для сопоставления сред нет.

Если признать, что добавление Максвеллом в уравнения поля «тока смещения» есть волюнтаризм, то не придется говорить о каком-то самостоятельном виде движения полей кроме движения потенциалов. Исчезает понятие материальности электрического и магнитного поля.

«Выражение «реальное поле» реального смысла не имеет».... «реальное поле – это математическая функция, которая используется нами, чтобы избежать представления о дальнодействии» [4, с. 15]. В этой форме мысль выражена излишне формально. Когда мы говорим о распространении потенциала, невольно присутствует представление о запаздывающем дальнодействии, физически оно есть.

2.5. Многочастотные поля

В общем случае частоты источников не равны.

Если наблюдатель находится между двумя источниками, то мимо него проходят одни волны влево другие направо. Когда мы ведём прием радиостанций разных частот в одном месте, то опять же понимаем, что имеем дело с самостоятельными электромагнитными полями. В каждой точке имеется много электромагнитных полей, а **не единое** электромагнитное поле.

Намеренье дать вывод формул для многочастотного поля представлено в [2. с. 374]. "Электромагнитные поля могут быть, в общем случае, произвольными функциями времени. Исследование и расчет таких полей можно существенно облегчить (без ограничения общности выводов) если данное поле рассматривать как результат наложения постоянного поля и переменных полей, меняющихся во времени по гармоническому закону с различными частотами. Этот прием, как известно, обосновывается теорией тригонометрических рядов (и интегралов Фурье) и линейностью уравнений".

Однако последующий вывод уравнений во всех учебниках проведен только для поля одной частоты.

Вокруг нас имеет место не электромагнитное поле, а множество электрических и магнитных полей. Поле на каждой частоте есть самостоятельное поле.

Особняком стоят поля целых кратных частот. Здесь мы, как и во всей электро радиотехнике, имеем дело с несинусоидальным полем той или иной формы (например, импульсным) и разложением этих полей в ряды Фурье.

На нулевой частоте могут независимо существовать два поля: одно электрическое, другое магнитное.

Вернёмся к введению. Поле, созданное расположенными рядом электрическим зарядом и магнитом, представляет собой два независимых поля. Каждое из этих полей является атрибутом своего потенциала, но вместе они не образуют единого электромагнитного поля, поскольку векторы потенциалов и их полей \vec{E} и \vec{H} не связаны уравнениями электродинамики. Иллюстрацией этого является, например, то, что изменение положения заряда не приводит к изменениям магнитного поля. Главная ошибка в том высказывании И. Е. Тамма заключается в отнесении такого рода двух полей к виду одного электромагнитного.

3. ПРИМЕРЫ ПОЛЕЙ ПОТЕНЦИАЛОВ И ИХ ПРОИЗВОДНЫХ ПОЛЕЙ

Геометрические формы основных источников для тех и других потенциалов различны: для электрических потенциалов основные источники имеют форму точечного заряда, форму линий и замкнутой поверхности (например, сферы); для магнитных потенциалов – форму линий, рамок (колец), катушек. Точечных и замкнутых поверхностных источников для магнитных потенциалов не бывает. Переменные электрическое поле может быть возбуждено изменениями электрического или магнитного потенциала.

Заряд на изоляционной подставке может изменяться за счёт притекающего (оттекающего) тока. Например, в диполе Герца два разноименных точечных заряда изменяются за счёт перемещения частей зарядов от одного полюса к другому, то есть электрического тока. Таким образом, диполь Герца является источником сразу двух видов; электрического и магнитного поля.

Ниже конечные результаты расчёта потенциалов представлены относительно короткими формулами (обведены рамкой) и графиками, вместе с тем, для того чтобы можно было проверить их достоверность приведены подробные преобразования.

3.1. Примеры полей электрических потенциалов

3.1.1. Потенциал уединённого точечного заряда

Потенциал уединённого точечного заряда $\varphi = \frac{q}{4\pi\varepsilon_0} \frac{1}{R_u}$ следует из опытного закона Кулона. Здесь R_u радиус интегрирования, расстояние от точки расположения заряда q до точки наблюдения (точки поиска потенциала). Потенциал группы зарядов является суммой потенциалов в точке наблюдения от всех зарядов. Формула является основой для нахождения электрических потенциалов практических всех геометрических форм источников.

3.1.2. Потенциал равномерно заряженной сферической поверхности

Определим электрический потенциал заряда, равномерно распределенного на шаровой поверхности радиуса r (рис. 4). В виду сферической симметрии решение будем искать в сферических координатах: R, Θ , α .

Рис 4

Элемент заряженной поверхности $ds = r \cdot d\alpha_{\rho} \cdot r \sin \theta_{\rho} \cdot d\theta_{\rho}$ Элемент заряда $dq = \frac{q \cdot ds}{4\pi r^2}, \quad dq = \frac{q \cdot d\alpha_{\rho} \cdot \sin \theta_{\rho} d\theta_{\rho}}{4\pi},$ Потенциал $\varphi = \frac{q}{16\pi^2 \varepsilon_0} \oint \frac{d\alpha_{\rho} \cdot \sin \theta_{\rho} \cdot d\theta_{\rho}}{R_u}$

Радиус интегрирования – расстояние от точки расположения элементарного заряда до точки наблюдения запишем сначала в декартовых координатах. Координаты точки наблюдения: x, y, z. Координаты элемента заряженной сферической поверхности: x_{ρ} , y_{ρ} , z_{ρ} . Проекции разности координат: $(x-x_{\rho})$, $(y-y_{\rho})$, $(z-z_{\rho})$.

Расстояние между точкой наблюдения и элементом поверхности $R_u = \sqrt{((x - x_\rho)^2 + (y - y_\rho)^2 + (z - z_\rho)^2}$. Связь декартовых координат точек пространства со сферическими: $x = R \sin \theta \cos \alpha$ $y = R \sin \theta \sin \alpha$, $z = R \cos \theta$, элементов заряженной поверхности: $x_\rho = r \sin \theta_\rho \cos \alpha_\rho$, $y_\rho = r \sin \theta_\rho \sin \alpha_\rho$, $z_\rho = r \cos \theta_\rho$. Радиус интегрирования:

$$\begin{aligned} R_{u} &= \sqrt{x^{2} - 2xx_{\rho} + x_{\rho}^{2} + y^{2} - 2yy_{\rho} + y_{\rho}^{2} + z^{2} - 2zz_{\rho} + z_{\rho}^{2}} \\ &= \sqrt{R^{2} + r^{2} - 2Rr(\sin\theta\cos\alpha\sin\theta_{\rho}\cos\alpha_{\rho} + \sin\theta\sin\alpha\sin\theta_{\rho}\sin\alpha_{\rho} + \cos\theta\cos\theta_{\rho})} \\ &= \sqrt{R^{2} + r^{2} - 2Rr(\sin\theta\sin\theta_{\rho}(\cos\alpha\cos\alpha_{\rho} + \sin\alpha\sin\alpha_{\rho}) + \cos\theta\cos\theta_{\rho})} \\ R_{u} &= \sqrt{R^{2} + r^{2} - 2Rr(\sin\theta\sin\theta_{\rho}\cos(\alpha - \alpha_{\rho}) + \cos\theta\cos\theta_{\rho})}. \end{aligned}$$
Обозначим $(\alpha - \alpha_{\rho}) = \beta$.

тогда $R_u = \sqrt{R^2 + r^2 - 2Rr(\cos\theta\cos\theta_{\rho} + \sin\theta\sin\theta_{\rho}\cos\beta)}$

Это самый простой вид записи размера радиуса интегрирования в сферических координатах. Можно перейти к относительным размерам: $\frac{R}{r} = \chi_R$

$$R_{u} = r \sqrt{\chi_{R}^{2} + 1 - 2\chi_{R} (\cos\theta\cos\theta_{\rho} + \sin\theta\sin\theta_{\rho}\cos\beta)} \quad (3.1)$$

Общее решение потенциала встречает математические трудности.

Определим потенциал на оси при $\theta = 0$, и следовательно $\sin \theta = 0$, и $\cos \theta = 1$. Из (3.1) найдём радиус интегрирования $R_u = r \sqrt{\chi_R^2 + 1 - 2\chi_R(\cos \theta_\rho)}$.

Запишем потенциал: $\varphi = \frac{q}{16\pi^2 \varepsilon_0 r} \oint \frac{d\beta_{\rho} \cdot \sin \theta_{\rho} d\theta_{\rho}}{\sqrt{\chi_R^2 + 1 - 2\chi_R(\cos \theta_{\rho})}}$

Сделаем замену переменных. $dt = \sin \theta_{\rho} d\theta_{\rho}$. $\cos \theta_{\rho} = -t$ После замены переменных потенциал: $\varphi = \frac{q}{16\pi^2 \varepsilon_0 r} \oint \frac{d\beta_{\rho} dt}{\sqrt{\chi_R^2 + 1 + 2\chi_R t}}$.

Параметры β и *t* являются независимыми; интегрирование по β_{ρ} дает 2π .

Интеграл от простейшей иррациональной дроби $\frac{1}{\sqrt{at+b}}$ имеет вид $\frac{2}{a}\sqrt{at+b}$. То есть $\varphi = \frac{q}{8\pi\varepsilon_0 r}\frac{2}{2\chi_\rho}\sqrt{\chi_R^2 + 1 + 2\chi_\rho t} =$ $= \frac{q}{8\pi\varepsilon_0 r}\frac{1}{\chi_R}\sqrt{\chi_R^2 + 1 - 2\chi_\rho \cos\theta_\rho}\Big|_0^{\pi}$.

$$\begin{split} \varphi &= \frac{q}{8\pi\varepsilon_0 r} \frac{1}{\chi_R} \left(\sqrt{\chi_R^2 + 1 + 2\chi_R} - \sqrt{\chi_R^2 + 1 - 2\chi_R} \right) = \\ &= \frac{q}{8\pi\varepsilon_0 r} \frac{1}{\chi_R} \left(\sqrt{(\chi_R + 1)^2} - \sqrt{(\chi_R - 1)^2} \right). \qquad \varphi = \frac{q}{8\pi\varepsilon_0 r} \frac{1}{\chi_R} (\chi_R + 1 - |\chi_R - 1|). \end{split}$$

При $\chi_R < 1$, (внутри сферы) $|\chi_R - 1| = 1 - \chi_R$, потенциал

$$\varphi = \frac{q}{4\pi\varepsilon_0 r}$$
, постоянный (3.2)

(решение не очевидное), при $\chi_R > 1$, (вне сферы)

$$|\chi_R - 1| = \chi_R - 1, \varphi = \frac{q}{4\pi\varepsilon_0 r} \frac{1}{\chi_R}$$
 (3.3)

уменьшается по гиперболическому закону, также как у точечного заряда.

Рис. 5

В силу симметрии такой потенциал должны иметь все точки, находящиеся на одинаковом расстоянии от центра сферы, не только на оси $\theta = 0$.

Здесь выявляется очень важный факт: потенциал непрерывен при изменении координат от бесконечности до нуля. Потенциал показывает, что при переносе контрольного заряда из 44 бесконечности до точек на поверхности шара и до всех точек, расположенных внутри шаровой поверхности, одинаков. Электрическое поле, определяемое через производные потенциала, внутри шара равно нулю. Поле потенциала является более полной, информативной характеристикой электрического поля (в частности, не требуется поиск постоянной интегрирования, который необходим при определении потенциала через напряженность поля).

3.1.3. Электрический диполь

Под диполем обычно понимают конфигурацию двух одинаковых по величине зарядов разной полярности. (Рис 6).

Как раньше радиус интегрирования

$$R_{u} = \sqrt{\left(\left(x - x_{\rho}\right)^{2} + \left(y - y_{\rho}\right)^{2} + \left(z - z_{\rho}\right)^{2}}$$
при $x_{\rho} = y_{\rho} = 0,$
$$R_{u} = \sqrt{R^{2} + \left(z - z_{\rho}\right)^{2}}$$

В конфигурации источника потенциала имеется всего два заряда, то есть, имеем два радиуса интегрирования:

$$R_{u1} = \sqrt{R^2 + (z - z_1)^2}, R_{u2} = \sqrt{R^2 + (z + z_2)^2}.$$

И определение общего потенциала сводится к простому суммированию потенциалов двух зарядов (второй заряд отрицательный).

$$\varphi = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{R_{u1}} - \frac{1}{R_{u2}} \right) = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{\sqrt{R^2 + (z - l/2)^2}} - \frac{1}{\sqrt{R^2 + (z + l/2)^2}} \right)$$

В относительных единицах $\chi_R = \frac{R}{l/2}, \chi_Z = \frac{z}{l/2}$

45

$$\varphi = \frac{q}{2\pi\varepsilon_0 l} \left(\frac{1}{\sqrt{\chi_R^2 + (\chi_Z - 1)^2}} - \frac{1}{\sqrt{\chi_R^2 + (\chi_Z + 1)^2}} \right)$$
(3.4)

(Для «гантели» (два заряда одинаковой полярности) знак в середине скобок будет плюс. Будем иметь грубое подобие потенциала заряженного отрезка).

Применяя $\vec{E} = -grad\varphi$. к (3.4), можно определить электрическое поле диполя. Оператор градиента в цилиндрических координатах: $grad\varphi = r^0 \frac{\partial \varphi}{\partial R} + \alpha^0 \frac{1}{r} \frac{\partial \varphi}{\partial \alpha} + z^0 \frac{\partial \varphi}{\partial z}$ при имеющемся виде симметрии потенциал не зависит от угла α .. В относительных единицах, $E_R = -\frac{2}{l} \frac{\partial \varphi}{\partial \chi_R}$, $E_Z = -\frac{2}{l} \frac{\partial \varphi}{\partial \chi_Z}$.

Например, производная дроби

$$\frac{\partial}{\partial \chi_R} \left(\frac{1}{\sqrt{\chi_R^2 + (\chi_Z - 1)^2}} \right) = \frac{-\chi_R}{\sqrt{(\chi_R^2 + (\chi_Z - 1)^2)^3}}$$

Проведя преобразования, найдём радиальную составляющую поля:

$$E_{R} = \frac{q}{\pi \varepsilon_{0} l^{2}} \left(\frac{\chi_{R}}{\sqrt{\left(\chi_{R}^{2} + (\chi_{Z} - 1)^{2}\right)^{3}}} - \frac{\chi_{R}}{\sqrt{\left(\chi_{R}^{2} + (\chi_{Z} + 1)^{2}\right)^{3}}} \right)$$
(3.5)

Осевая составляющая электрического поля:

$$E_{Z} = \frac{q}{\pi \varepsilon_{0} l^{2}} \left(\frac{\chi_{Z} - 1}{\sqrt{\left(\chi_{R}^{2} + (\chi_{Z} - 1)^{2}\right)^{3}}} - \frac{\chi_{Z} + 1}{\sqrt{\left(\chi_{R}^{2} + (\chi_{Z} + 1)^{2}\right)^{3}}} \right)$$
(3.6)

Если заряды переменны во времени q(t), то потенциал и поле напряженности будут переменными.

3.1.4. Электрический потенциал диэлектрического шнура

Мы говорим о диэлектрическом шнуре, а не о проводе. В проводе возможно движение свободных зарядов вдоль него и решение становится неопределённым.

Выбираем цилиндрическую систему координат (Рис 7). Ось z совместим с осью шнура. Элемент длины участка dl=dz.

3.1.4.1. Теперь потенциал, создаваемый зарядами шнура: $\varphi_q(t) = \frac{1}{4\pi\varepsilon\varepsilon_0} \int \frac{\rho(t)}{R_u} dV, \frac{q}{l} = \tau$, или $\varphi_q(t) = \frac{1}{4\pi\varepsilon\varepsilon_0} \int \frac{\tau}{R_u} dz$.

Однако радиус интегрирования – расстояние от точки наблюдения до точки расположения элемента заряда R_u сначала, найдем, используя декартовы координаты. Координаты точки наблюдения: x, y, z. Координаты элемента заряда $x_{\tau}=0$, $y_{\tau}=0$, z_{τ} . Радиус интегрирования

 $R_u = \sqrt{(x - x_\tau)^2 + (y - y_\tau)^2 + (z - z_\tau)^2} = \sqrt{x^2 + y^2 + (z - z_\tau)^2},$ учитывая связь декартовых координат с цилиндрическими $x = r \cos \alpha, y = r \sin \alpha, z$, получили $x^2 + y^2 = r^2$, г – расстояние от оси координат.

Находим суммарное действие всех элементов заряда отрезка – потенциал ϕ .

$$\varphi = \frac{\tau}{4\pi\varepsilon\varepsilon_0} \int_{z_\tau} \frac{dz_i}{\sqrt{r^2 + (z - z_\tau)^2}} = \frac{\tau}{4\pi\varepsilon\varepsilon_0} \int_{z_\tau} \frac{dz_i}{r\sqrt{1 + \frac{(z - z_\tau)^2}{r^2}}} = \frac{-\tau}{4\pi\varepsilon\varepsilon_0} \int_u \frac{du}{\sqrt{1 + u^2}}$$

Здесь применена замена переменных $(z-z_{\tau})/r=u. -dz_{\tau}/r=du.$

Для определения потенциала требуется интегрировать от минус бесконечности до бесконечности.

Известно, что интеграл для провода бесконечной длины расходится, [1, с. 349]. Мы определим потенциал отрезка шнура длиной l (L).

Подставляем пределы: $z_1, z_2 = \pm l/2$.

$$\varphi(z,r) = \frac{-\tau}{4\pi\varepsilon\varepsilon_0} \operatorname{arcsh} \frac{z-z_{\tau}}{r} \Big|_{-l/2}^{l/2} = \frac{-\tau}{4\pi\varepsilon\varepsilon_0} \Big(\operatorname{arcsh} \frac{z-l/2}{r} - \operatorname{arcsh} \frac{z+l/2}{r} \Big)$$

Выразим размеры в относительных единицах – в длинах половины отрезка, например, высоту – $z/(l/2)=\chi_Z$, расстояние до оси $r/(l/2)=\chi_R$.

 $\varphi = \frac{\tau}{4\pi\varepsilon\varepsilon_0} \left(\operatorname{arcsh} \frac{\chi_{Z+1}}{\chi_R} - \operatorname{arcsh} \frac{\chi_{Z-1}}{\chi_R} \right)$ Это тригонометрическая форма записи потенциала. (3.7)

Рассмотрим изменение потенциала по радиусу в центре отрезка, то есть при z=0, на плоскости начала координат:

$$\varphi = \frac{\tau}{4\pi\varepsilon\varepsilon_0} \left(\operatorname{arcsh} \frac{+l}{2r} - \operatorname{arcsh} \frac{-l}{2r} \right). \quad \text{Поскольку,} \quad \operatorname{arcsh}(-\alpha) = \\ = -\operatorname{arcsha, то} \\ \varphi = \frac{\tau}{4\pi\varepsilon\varepsilon_0} 2 \left(\operatorname{arcsh} \frac{l}{2r} \right). \quad \text{Или с учетом того, что } \operatorname{arcshx} = \\ = \ln\left(x + \sqrt{x^2 + 1}\right), \quad \text{найдем } \varphi = \frac{\tau}{4\pi\varepsilon\varepsilon_0} 2 \ln\left(\frac{l}{2r} + \sqrt{\left(\frac{l}{2r}\right)^2 + 1}\right). \quad \text{И} \\ \text{при малых г по сравнению с длиной отрезка } \frac{l}{r} + 1 \approx \frac{l}{r}, \text{ получим:} \\ \varphi = \frac{\tau}{4\pi\varepsilon\varepsilon_0} 2 * \ln\left(\frac{l}{r}\right) = \frac{\tau}{4\pi\varepsilon\varepsilon_0} 2 * \ln\left(\frac{2}{\chi_R}\right). \end{cases}$$

Разность потенциалов в середине отрезка при разных значениях r:

$$\varphi_2 - \varphi_1 = \frac{\tau}{2\pi\varepsilon\varepsilon_0} \left(ln \frac{l}{r_2} - ln \frac{l}{r_1} \right) = \frac{\tau}{2\pi\varepsilon\varepsilon_0} \left(ln \frac{r_1}{r_2} \right)$$
(3.8)

3.1.4.2. Электрическое поле. $\vec{E} = -grad\varphi$. Оператор градиента в цилиндрических координатах: $grad\varphi = \vec{r}^0 \frac{\partial \varphi}{\partial r} + \vec{\alpha}^0 \frac{1}{r} \frac{\partial \varphi}{\partial \alpha} + \vec{z}^0 \frac{\partial \varphi}{\partial z}$ при имеющемся виде симметрии $\vec{E} = -grad\varphi = -\vec{r}^0 \frac{\partial \varphi}{\partial r} - \vec{z}^0 \frac{\partial \varphi}{\partial z}$. $E_R = -\frac{\partial \varphi}{\partial r}, E_Z = -\frac{\partial \varphi}{\partial z}$.

При переходе к относительным единицам, $r/\frac{l}{2} = \chi_R$, $\partial r = \frac{l}{2}\partial\chi_R$, $z = \chi_Z \frac{l}{2}$, $\partial z = \frac{l}{2}\partial\chi_Z$, то есть $grad\varphi = -r^0 \frac{2}{l} \frac{\partial\varphi}{\partial\chi_R} - z^0 \frac{2}{l} \frac{\partial\varphi}{\partial\chi_Z}$, и $E_R = -\frac{2}{l} \frac{\partial\varphi}{\partial\chi_R}$, $E_Z = -\frac{2}{l} \frac{\partial\varphi}{\partial\chi_Z}$. Или

$$E_R = -\frac{l}{2} \frac{-\tau}{4\pi\varepsilon\varepsilon_0} \frac{1}{\sqrt{\left(\frac{\chi_Z + 1}{\chi_R}\right)^2 + 1}} \frac{\chi_Z + 1}{-\chi_R^2} =$$
$$= \frac{\tau \cdot l}{8\pi\varepsilon\varepsilon_0} \frac{1}{\chi_R} \left(\frac{\chi_Z + 1}{\sqrt{(\chi_Z + 1)^2 + \chi_R^2}} - \frac{\chi_Z - 1}{\sqrt{(\chi_Z + 1)^2 - \chi_R^2}}\right)$$

48

$$E_{Z} = -\frac{l}{2} \frac{-\tau}{4\pi\varepsilon\varepsilon_{0}} \frac{1}{\sqrt{\left(\frac{\chi_{Z}+1}{\chi_{R}}\right)^{2}+1}} \frac{1}{\chi_{R}} =$$
$$= \frac{\tau \cdot l}{8\pi\varepsilon\varepsilon_{0}} \left(\frac{1}{\sqrt{(\chi_{Z}+1)^{2}+\chi_{R}^{2}}} - \frac{1}{\sqrt{(\chi_{Z}-1)^{2}+\chi_{R}^{2}}}\right)$$

3.1.5. Электрический потенциал заряженного кольца

В виду цилиндрической симметрии решение будем искать в цилиндрических координатах: r, α, z. (Рис 8).

Рис. 8

Однако радиус интегрирования – расстояние от точки наблюдения до точки расположения элементарного заряда запишем сначала в декартовых координатах.

Координаты точки наблюдения: x, y, z. Координаты элемента заряженной окружности: x_{ρ} , y_{ρ} , z_{ρ} . Разности проекций: $(x-x_{\rho})$, $(y-y_{\rho})$, $(z-z_{\rho})$.

Расстояние $R_u = \sqrt{((x - x_\rho)^2 + (y - y_\rho)^2 + (z - z_\rho)^2)}$. Связь декартовых координат точек пространства с цилиндрическими: $x = r \cos \alpha$, $y = r \sin \alpha$, z. Координаты элементов заряда; $x_\rho = r \cos \alpha_\rho$, $y_\rho = r \sin \alpha_\rho$, z_ρ .

$$R_{u} = \sqrt{x^{2} - 2xx_{\rho} + x_{\rho}^{2} + y^{2} - 2yy_{\rho} + y_{\rho}^{2} + (z - z_{i})^{2}} = \sqrt{r^{2} - 2xx_{\rho} + r_{\rho}^{2} - 2yy_{\rho} + (z - z_{i})^{2}}$$

$$R_{u} = \sqrt{r^{2} + r_{\rho}^{2} - 2rr_{\rho}(\cos\alpha\cos\alpha_{\rho} + \sin\alpha\sin\alpha_{\rho}) + (z - z_{\rho})^{2}}$$

$$R_{u} = \sqrt{r^{2} + r_{\rho}^{2} + (z - z_{\rho})^{2} - 2rr_{\rho}\cos(\alpha - \alpha_{\rho})}$$
обозначим $\alpha - \alpha_{\rho} = \beta$

Ради общности можно перейти к относительным размерам: $\frac{r}{r_{кольца}} = \chi_R \qquad \left(\frac{z}{r_{\kappa}}\right) = \chi_Z \qquad \left(\frac{z_{\rho}}{r_{\kappa}}\right) = \chi_{Z\rho}, \qquad R_u = r\sqrt{\chi_R^2 + 1 + (\chi_Z - \chi_{Z\rho})^2 - 2\chi_R \cos\beta}$

Когда кольцо расположено на плоскости ху, $z_{\rho}=0$. $\chi_{Z\rho}=0$

Это самый простой вид записи радиуса интегрирования в цилиндрической системе координат.

3.1.5.1. Отсюда можно начать интегрировать. Длина окружности $l = 2\pi r$. Потенциал элемента заряженного кольца. $d\varphi = \frac{dq}{4\pi\varepsilon_0}\frac{1}{R_u} = \frac{q}{8\pi^2\varepsilon_0}\frac{rd\beta}{R_u} = \frac{q}{8\pi^2\varepsilon_0}\frac{d\beta}{R_u}$. Потенциал кольца: $\varphi = \frac{q}{8\pi^2\varepsilon_0}\oint \frac{d\beta}{R_u} = \frac{q}{8\pi^2\varepsilon_0}\oint \frac{d\beta}{r\sqrt{\chi_R^2 + 1 + \chi_Z^2 - 2\chi_R \cos\beta}},$ (3.9)

Запишем косинус через половинный угол $\cos \beta = (1 - 2\sin^2\frac{\beta}{2}), \varphi = \frac{q}{8\pi^2\varepsilon_0 r} \oint \frac{d\beta}{\sqrt{\chi_R^2 + 1 + \chi_Z^2 - 2\chi_R + 4\chi_R \sin^2\frac{\beta}{2}}}$ и сделаем замену пе-

ременных, чтобы привести корень к форме, присущей эллиптическим интегралам.

$$\frac{\beta}{2} = \psi + \frac{\pi}{2} \quad \psi = \left(\frac{\beta}{2} - \frac{\pi}{2}\right), \quad d\beta = 2d\psi,$$
$$\sin^2\frac{\beta}{2} = 1 - \cos^2\frac{\beta}{2} = 1 - \sin^2\psi.$$

Пределы
$$\beta = 0, \ \psi = -\pi/2; \ \beta = 2\pi, \ \beta/2 = \pi; \ \psi = \pi/2.$$

$$\varphi = \frac{q}{8\pi^2 \varepsilon_0 r} \int_{-\pi/2}^{\pi/2} \frac{d\beta}{\sqrt{(\chi_R + 1)^2 + \chi_Z^2 - 4\chi_R \sin^2 \psi}},$$

(3.10)

обозначим $\frac{4\chi_R}{(\chi_R+1)^2+\chi_Z^2} = k^2$

это – фундаментальный параметр оценки пространства с практически наиболее частой цилиндрической (осевой) симметрией.

$$\varphi = \frac{q}{4\pi^2 \varepsilon_0 r} \int_{-\pi/2}^{\pi/2} \frac{d\psi}{\sqrt{(\chi_R + 1)^2 + \chi_Z^2} \sqrt{1 - k^2 \sin^2 \psi}}$$
. Потенциал кольца в

точке x, y, z: Функция относительно угла ψ - чётная, поэтому можно установить меньшие пределы. Корень с параметрами X_R и X_Z также не зависит от ψ и может быть вынесен за знак интеграла.

$$\varphi = \frac{q}{2\pi^2 \varepsilon_0 r} \frac{1}{\sqrt{(\chi_R + 1)^2 + \chi_Z^2}} \int_0^{\pi/2} \frac{d\psi}{\sqrt{1 - k^2 \sin^2 \psi}} = \frac{q}{2\pi^2 \varepsilon_0 r} \frac{F(k)}{\sqrt{(\chi_R + 1)^2 + \chi_Z^2}} \quad (3.11).$$

Интеграл $\int_{0}^{\pi/2} \frac{dx}{\sqrt{1-k^2 \sin^2 x}} = F$ называют полным эллиптическим интегралом первого рода и обозначают F или K. Эллиптический интеграл F(k) определит диаграмму направленности в плоскости, проходящей через ось z.

Рис. 9. Графики распределения потенциала кольца в пространстве

3.1.5.2. Электрическое поле плоского кольца.

Авторы большинства книг указывают на возможность определения электрического и магнитного поля через поле потенциала, не производя самих расчётов. Расчеты оказываются весьма громоздкими, однако выполненные один раз в относительных единицах они оказываются пригодными в большинстве практических случаев

 $\vec{E} = -grad\varphi$. Оператор градиента в цилиндрических координатах: $grad\varphi = \vec{r}^0 \frac{\partial \varphi}{\partial r} + \vec{\alpha}^0 \frac{1}{r} \frac{\partial \varphi}{\partial \alpha} + \vec{z}^0 \frac{\partial \varphi}{\partial z}$ при имеющемся виде симметрии $\vec{E} = -grad\varphi = -\vec{r}^0 \frac{\partial \varphi}{\partial r} - \vec{z}^0 \frac{\partial \varphi}{\partial z}$. $E_R = -\frac{\partial \varphi}{\partial r}$, $E_Z = -\frac{\partial \varphi}{\partial z}$.

При переходе к относительным единицам, $R = \chi_R r$, $\partial R = r \partial \chi_R$, $z = \chi_Z r$, $\partial z = r \partial \chi_Z$, то есть $grad\varphi = -r^0 \frac{1}{r} \frac{\partial \varphi}{\partial \chi_R} - z^0 \frac{1}{r} \frac{\partial \varphi}{\partial \chi_Z}$, и $E_R =$ $= -\frac{1}{r} \frac{\partial \varphi}{\partial \chi_R}$, $E_Z = -\frac{1}{r} \frac{\partial \varphi}{\partial \chi_Z}$. Применяя к (3.11), найдем $E_R = -\frac{\partial \varphi}{\partial R} = -\frac{\partial \varphi}{r \partial \chi_R}$ $= \frac{-q}{2\pi^2 \varepsilon_0 r^2} \left[\left(\frac{\partial}{\partial \chi_R} \left(\frac{1}{\sqrt{(\chi_R + 1)^2 + \chi_Z^2}} \right) \right) \int_0^{\pi/2} \frac{d\psi}{\sqrt{1 - k^2 \sin^2 \psi}} + \frac{1}{\sqrt{(\chi_R + 1)^2 + \chi_Z^2}} \frac{\partial}{\partial \chi_R} \int_0^{\pi/2} \frac{d\psi}{\sqrt{1 - k^2 \sin^2 \psi}} \right],$ (3.12)

Производная дроби
$$\frac{\partial}{\partial \chi_R} \left(\frac{1}{\sqrt{(\chi_R + 1)^2 + \chi_Z^2}} \right) = \frac{-(\chi_R + 1)}{\sqrt{((\chi_R + 1)^2 + \chi_Z^2)^3}}.$$

Первый член суммы (3.12): $\frac{-(\chi_R+1)}{\sqrt{((\chi_R+1)^2+\chi_Z^2)^3}}F.$

Второй член суммы. Дифференцируя интеграл F, найдём: $\frac{\partial}{\partial \chi_R} \int_0^{\pi/2} \frac{\partial \psi}{\sqrt{1-k^2 \sin^2 \psi}} = \frac{1}{2} \frac{\partial (k^2)}{\partial \chi_R} \int_0^{\pi/2} \frac{\sin^2 \psi}{\sqrt{(1-k^2 \sin^2 \psi)^3}} \partial \psi, \text{ здесь}$ $\frac{\partial (k^2)}{\partial \chi_R} = \frac{\partial}{\partial \chi_R} \frac{4\chi_R}{(\chi_R+1)^2 + \chi_Z^2} =$ $= 4 \left(\frac{1}{(\chi_R+1)^2 + \chi_Z^2} + \frac{-2\chi_R(\chi_R+1)}{((\chi_R+1)^2 + \chi_Z^2)^2} \right) =$

52

$$= \frac{4(-\chi_R^2 + 1 + \chi_Z^2)}{((\chi_R + 1)^2 + \chi_Z^2)^2} \operatorname{M} \\ \int_0^{\pi/2} \frac{\sin^2 \psi \, d\psi}{\sqrt{\left(1 - k^{-2} \sin^2 \psi\right)^3}} = \int_0^{\pi/2} \frac{(1 - 1 + k^2 \sin^2 \psi) d\psi}{k^2 \sqrt{(1 - k^2 \sin^2 \psi)^3}} = \\ = \int_0^{\pi/2} \frac{d\psi}{k^2 \sqrt{(1 - k^2 \sin^2 \psi)^3}} - \\ - \int_0^{\pi/2} \frac{(1 - k^2 \sin^2 \psi) d\psi}{k^2 \sqrt{(1 - k^2 \sin^2 \psi)^3}} = \frac{1}{k^2} \int_0^{\pi/2} \frac{d\psi}{\sqrt{(1 - k^2 \sin^2 \psi)^3}} - \\ \frac{1}{k^2} \int_0^{\pi/2} \frac{d\psi}{\sqrt{(1 - k^2 \sin^2 \psi)}}$$

Теперь в числителе нет синуса, здесь второй интеграл уже есть эллиптический интеграл первого рода. Первый интеграл есть первичный интеграл 3 вида – $\theta(\psi, k)$, Таблицы на него отсутствуют. По [9, с. 33] он выражается через интеграл второго рода и дополнительный член, который в нашем случае при подстановке пределов 0 и $\pi/2$ обращается в 0.

$$\int_{0}^{\frac{n}{2}} \frac{d\psi}{\sqrt{(1-k^{2}\sin^{2}\psi)^{3}}} = \theta = \frac{1}{1-k^{2}} \left(E(\psi,k) - \frac{k^{2}\sin\psi\cos\psi}{\sqrt{1-k^{2}\sin^{2}\psi}} \right) = \frac{1}{1-k^{2}} E(\psi,k)$$

$$= \frac{1}{1-k^{2}} E(\psi,k)$$

$$\text{To ects } \int_{0}^{\pi/2} \frac{\sin^{2}\psi\cdot d\psi}{\sqrt{(1-k^{2}\sin^{2}\psi)^{3}}} = \frac{1}{k^{2}} \left(\frac{1}{1-k^{2}} E(\psi,k) - F(\psi,k) \right), \text{ rge}$$

$$\frac{1}{1-k^{2}} = \frac{1}{1-\frac{4\chi_{R}}{(\chi_{R}+1)^{2}+\chi_{Z}^{2}}} = \frac{(\chi_{R}+1)^{2}+\chi_{Z}^{2}}{(\chi_{R}+1)^{2}+\chi_{Z}^{2}-4\chi_{R}} = \frac{(\chi_{R}+1)^{2}+\chi_{Z}^{2}}{(\chi_{R}-1)^{2}+\chi_{Z}^{2}}$$

Для получения производной от интеграла F остается разделить на 2 и умножить на производную $\frac{\partial(k^2)}{\partial \chi_B}$

$$\frac{\partial}{\partial \chi_R} \int_0^{\pi/2} \frac{\partial \psi}{\sqrt{1 - k^2 \sin^2 \psi}} = \frac{1}{2k^2} \frac{\partial (k^2)}{\partial \chi_R} \left(\frac{1}{1 - k^2} E(k) - F(k) \right) = \\ = \frac{-(\chi_R^2 - 1 - \chi_Z^2)}{2\chi_R} \left(\frac{E(k)}{((\chi_R - 1)^2 + \chi_Z^2)} - \frac{F(k)}{((\chi_R + 1)^2 + \chi_Z^2)} \right),$$

где
$$\frac{1}{2k^2} \frac{\partial(k^2)}{\partial\chi_R} = \frac{1}{2} \frac{(1+\chi_R)^2 + \chi_Z^2}{4\chi_R} \frac{4(-\chi_R^2 + 1 + \chi_Z^2)}{((\chi_R + 1)^2 + \chi_Z^2)^2} = \frac{(-\chi_R^2 + 1 + \chi_Z^2)}{2\chi_R((\chi_R + 1)^2 + \chi_Z^2)}$$

Полностью второй член суммы (3.12):

$$\frac{1}{\sqrt{(\chi_R+1)^2+\chi_Z^2}} \frac{\partial}{\partial \chi_R} \int_0^{\pi/2} \frac{d\psi}{\sqrt{1-k^2 \sin^2 \psi}} = \\ = \left(\frac{-(\chi_R^2-1-\chi_Z^2)}{2\chi_R\sqrt{(\chi_R+1)^2+\chi_Z^2}}\right) \left(\frac{E(k)}{(\chi_R-1)^2+\chi_Z^2} - \frac{F(k)}{((\chi_R+1)^2+\chi_Z^2)}\right)$$

Дифференцирование интеграла F свелось к комбинированию интегралов Е и F с различными коэффициентами. Радиальная составляющая электрического поля будет:

$$\begin{split} E_{R} &= -\frac{\partial \varphi}{\partial R} = -\frac{\partial \varphi}{r \partial \chi_{R}} = \frac{-q}{2\pi^{2}\varepsilon_{0}r^{2}} \left[\frac{-(\chi_{R}+1)}{\sqrt{((\chi_{R}+1)^{2}+\chi_{Z}^{2})^{3}}} F(k) + \\ &+ \left(\frac{-(\chi_{R}^{2}-1-\chi_{Z}^{2})}{2\chi_{R}\sqrt{(\chi_{R}+1)^{2}+\chi_{Z}^{2}}} \right) \left(\frac{E(k)}{(\chi_{R}-1)^{2}+\chi_{Z}^{2}} - \frac{F(k)}{((\chi_{R}+1)^{2}+\chi_{Z}^{2})} \right) \right]. \ E_{R} = \\ &= \frac{-q}{4\pi^{2}\varepsilon_{0}r^{2}} \left[\frac{1}{\chi_{R}\sqrt{(\chi_{R}+1)^{2}+\chi_{Z}^{2}}} \left(2\frac{\left((-\chi_{R}(\chi_{R}+1))F(k) \right)}{(\chi_{R}+1)^{2}+\chi_{Z}^{2}} + \right. \\ &+ \frac{(\chi_{R}^{2}-1-\chi_{Z}^{2})F(k)}{(\chi_{R}+1)^{2}+\chi_{Z}^{2}} \right) - - \frac{(\chi_{R}^{2}-1-\chi_{Z}^{2})E(k)}{(\chi_{R}-1)^{2}+\chi_{Z}^{2}} \right] \quad \text{приводя подобные члены} \\ \text{най пём:} \end{split}$$

найдём:

$$E_{R} = \frac{q}{4\pi^{2}\varepsilon_{0}r^{2}} \frac{1}{\sqrt{((\chi_{R}+1)^{2}+\chi_{Z}^{2})}} \left(\frac{1}{\chi_{R}}F(k) + \frac{(\chi_{R}^{2}-1-\chi_{Z}^{2})E(k)}{\chi_{R}((\chi_{R}-1)^{2}+\chi_{Z}^{2})}\right)$$
(3.13)

Графики изменения радиальной составляющей напряженности поля на разной высоте над плоскостью кольца в зависимости от расстояния от оси z представлены на рис 10.

Рис. 10. Радиальная составляющая электрического поля кольца

Отрицательное значение характеризует то, что внутри кольца поле направлено против направления роста радиуса (к центру кольца).

Очевидно, что при применении закона Гаусса $\oint_S E_n ds = \frac{q}{\varepsilon_0}$ при обходе поверхности должна учитываться и внутренняя сторона кольца. Формулировка *«значение потока не зависит от формы S до тех пор, пока заряд q находится внутри»* [3, с. 83] для внешней поверхности, охватывающей кольцо, оказывается неверной. Другими словами, поток вектора напряженности электрического поля зависит от конфигурации расположения зарядов внутри поверхности. В данном случае отсутствует объемная (сферическая) симметрия поля вокруг кольца.

Определим аксиальную (вертикальную) составляющую электрического поля.

$$E_{Z} = -\frac{\partial \varphi}{r \partial \chi_{Z}} = \frac{-q}{2\pi^{2} \varepsilon_{0} r^{2}} \left[\left(\frac{\partial}{\partial \chi_{Z}} \left(\frac{1}{\sqrt{(\chi_{R}+1)^{2} + \chi_{Z}^{2}}} \right) \right) \int_{0}^{\pi/2} \frac{d\psi}{\sqrt{1 - k^{2} \sin^{2} \psi}} + \frac{1}{\sqrt{(\chi_{R}+1)^{2} + \chi_{Z}^{2}}} \frac{\partial}{\partial \chi_{Z}} \int_{0}^{\pi/2} \frac{d\psi}{\sqrt{1 - k^{2} \sin^{2} \psi}} \right], \qquad (3.14)$$

Производная дроби
$$\frac{\partial}{\partial \chi_Z} \left(\frac{1}{\sqrt{(\chi_R + 1)^2 + \chi_Z^2}} \right) = \frac{-\chi_Z}{\sqrt{((\chi_R + 1)^2 + \chi_Z^2)^3}}$$

Первый член суммы (3.12): $\frac{-\chi_Z}{\sqrt{((\chi_R + 1)^2 + \chi_Z^2)^3}} F.$

Второй член суммы. Дифференцируя интеграл F, найдём:

$$\frac{\partial}{\partial \chi_Z} \int_0^{\pi/2} \frac{\partial \psi}{\sqrt{1 - k^2 \sin^2 \psi}} = \frac{1}{2} \frac{\partial (k^2)}{\partial \chi_Z} \int_0^{\pi/2} \frac{\sin^2 \psi}{\sqrt{(1 - k^2 \sin^2 \psi)^3}} \partial \psi, \text{ здесь}$$
$$\frac{\partial (k^2)}{\partial \chi_Z} = \frac{\partial}{\partial \chi_Z} \frac{4\chi_R}{(\chi_R + 1)^2 + \chi_Z^2} = 4\chi_R \left((-1) \frac{2\chi_Z}{((\chi_R + 1)^2 + \chi_Z^2)^2} \right) =$$
$$= \frac{-4\chi_R 2\chi_Z}{((\chi_R + 1)^2 + \chi_Z^2)^2}$$

С интегралом произведем аналогичные преобразования. Получим: $\frac{\partial}{\partial \chi_Z} \int_0^{\pi/2} \frac{\partial \psi}{\sqrt{1-k^2 \sin^2 \psi}} = \frac{1}{2k^2} \frac{\partial (k^2)}{\partial \chi_Z} \left(\frac{1}{1-k^2} E(k) - F(k) \right)$ (3.15)

Второй член суммы (3,14):

$$\begin{pmatrix} \frac{1}{\sqrt{(\chi_{R}+1)^{2}+\chi_{Z}^{2}}} \end{pmatrix} \frac{(\chi_{R}+1)^{2}+\chi_{Z}^{2}}{4\chi_{R}} \frac{-4\chi_{R}2\chi_{Z}}{((\chi_{R}+1)^{2}+\chi_{Z}^{2})^{2}} \begin{pmatrix} (\chi_{R}+1)^{2}+\chi_{Z}^{2}}{(\chi_{R}-1)^{2}+\chi_{Z}^{2}} E(k) - F \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{\sqrt{(\chi_{R}+1)^{2}+\chi_{Z}^{2}}} \end{pmatrix} \cdot \begin{pmatrix} \frac{-2\chi_{Z}}{(\chi_{R}-1)^{2}+\chi_{Z}^{2}} E(k) - \frac{-2\chi_{Z}}{((\chi_{R}+1)^{2}+\chi_{Z}^{2})} F(k) \end{pmatrix}$$
Ofa члена вместе $E_{Z} = \frac{q}{2\pi^{2}\varepsilon_{0}r^{2}} \frac{1}{\sqrt{(\chi_{R}+1)^{2}+\chi_{Z}^{2}}} *$

$$* \begin{pmatrix} \frac{-\chi_{Z}F}{(\chi_{R}+1)^{2}+\chi_{Z}^{2}} + \frac{-2\chi_{Z}}{(\chi_{R}-1)^{2}+\chi_{Z}^{2}} E(k) + \frac{2\chi_{Z}}{((\chi_{R}+1)^{2}+\chi_{Z}^{2})} F(k) \end{pmatrix}$$

$$E_{Z} = \frac{q}{2\pi^{2}\varepsilon_{0}r^{2}} \frac{1}{\sqrt{(\chi_{R}+1)^{2}+\chi_{Z}^{2}}} \begin{pmatrix} \chi_{Z}F(k) \\ (\chi_{R}+1)^{2}+\chi_{Z}^{2} \end{pmatrix} - \frac{2\chi_{Z}E(k)}{(\chi_{R}-1)^{2}+\chi_{Z}^{2}} \end{pmatrix}$$

$$(3.16)$$

Понятно, что в плоскости кольца, на высоте z=0, в силу имеющейся симметрии не может быть вертикальной составляющей поля.

3.2. Примеры полей магнитных потенциалов

Рассмотрим поля проводников с током. Под током понимается движение зарядов. Имеется несколько комбинаций такого движения. Движение электронов в электронной ламе или в пучке ускорителя заряженных частиц сопровождается электрическим полем заряда. Внешнее электрическое поле при движении зарядов в металлическом проводнике отсутствует, так как в проводнике имеется одинаковое количество положительных и отрицательных зарядов. В металлическом проводнике нет движения положительных зарядов, так они образованы зарядом неподвижных протонов. В ионной среде (растворы, вольтова дуга) ток состоит из движения зарядов обоих полярностей. Движение разнополярных зарядов в противоположных направлениях создает одинаковое магнитное поле. Сумму этих полей мы воспринимаем как единое магнитное поле. Здесь мы сталкиваемся и интереснейшим явлением. Мы не видим самих зарядов, однако, чувствуем скорость их движения.

Далее мы рассматриваем ток в целом электрически нейтрального проводника.

Типовыми конфигурациями проводников с током являются: прямой отрезок провода, рамка, катушка, соленоид и тороид. Несмотря на простоту геометрических форм, в литературе отсутствует полные строгие решения картины полей во всей области пространства вокруг проводника. В известных решениях нет ответа, как выглядит потенциал вблизи источника на расстояниях, сопоставимых с его размерами.

Вводя понятие вектор-потенциала \vec{A} учёные накладывают ограничение (как заклинание), что для постоянного поля $div\vec{A} = 0$ и для переменного поля $div\vec{A} = -\frac{1}{v^2}\frac{\partial\varphi}{\partial t}$. Однако, в уравнения для вычисления потенциала эти требования не заложены. При этом выяснилось, что принятое авторами многих книг по электродинамике [2, с. 348.], [8, с. 627], [1, с. 217, 438], [3, с. 279], [7, с. 220] допущение-предположение, что $div\vec{A} = 0$ на практике для многих простых конфигураций проводников не выполняется.

Рассмотрим подробнее ряд случаев.

3.2.1. Отрезок прямого провода с током

Отметим вначале некоторую некорректность постановки этого вопроса. Токи всегда замкнуты и отрезков тока не бывает. Однако диполь Герца является хорошим приближением к отрезку проводника с током. Под действием сторонних сил можно заставить заряды перемещаться в сторону друг друга. Чем быстрее перемещение зарядов, тем сильнее электрический ток. $i(t) = \frac{\partial q}{\partial t}$. Подобные решения проведены в [2, с. 341], [8, с. 649], [3, с. 263, 283].

Суммирование векторных потенциалов отрезков тока составляющих замкнутый контур позволяет определить векторный потенциал проводника сложной замкнутой формы.

3.2.1.1. Найдем вектор-потенциал отрезка провода с током во всех точках окружающего пространства (рис. 12).

Выберем цилиндрическую систему координат.

Координаты точки наблюдения R, α, z.

Вектор тока в этой системе имеет только одну проекцию вдоль оси z. Элемент тока $\vec{\delta} = d\vec{l} = Id\vec{l}$.Такую же составляющую будет иметь и вектор-потенциал **A**. $\vec{A} = \frac{\mu}{4\pi} \int_{V} \frac{\vec{\delta} dV}{R_{u}}$.

Однако радиус интегрирования – расстояние от точки наблюдения до точки расположения элемента тока R_u сначала, найдем, используя декартовы координаты. Координаты точки наблюдения: x, y, z. Координаты элемента тока x_i=0, y_i=0, z_i. Радиус интегрирования $R_u = \sqrt{(x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2} = \sqrt{x^2 + y^2 + (z - z_i)^2}$, учитывая связь декартовых координат с цилиндрическими $x = R \cos \alpha$, $y = R \sin \alpha$, z, получим $x^2 + y^2 = R^2$

Находим суммарное действие всех элементов тока отрезка – потенциал A_z .

$$A_{Z} = \frac{\mu I}{4\pi} \int_{z_{i}} \frac{dz_{i}}{\sqrt{R^{2} + (z - z_{i})^{2}}} = \frac{\mu I}{4\pi} \int_{z_{i}} \frac{dz_{i}}{R} \frac{dz_{i}}{\sqrt{1 + \frac{(z - z_{i})^{2}}{R^{2}}}} = \frac{\mu I}{4\pi} \int_{z_{i}} \frac{-du}{\sqrt{1 + u^{2}}}$$
$$A_{Z} = \frac{-\mu I}{4\pi} \operatorname{arcsh} \frac{z - z_{i}}{R} H \pi u \quad A_{Z} = \frac{-\mu I}{4\pi} \ln \left(\frac{z - z_{i}}{R} + \sqrt{\left(\frac{z - z_{i}}{R}\right)^{2} + 1} \right),$$
$$\operatorname{Tak} \operatorname{kak} Arshx = \ln \left(x + \sqrt{x^{2} + 1} \right) \quad (-\infty \lhd x \lhd +\infty)$$

Здесь применена замена переменных $(z-z_i)/R=u. dz_i/R=-du.$

Известно, что интеграл для провода бесконечной длины расходится, то есть векторный потенциал равен бесконечности [1, с. 349]. Мы определим векторный потенциал отрезка проводника длиной l (L).

Подставляем пределы $\pm l/2$.

$$A_Z = \frac{\mu l}{4\pi} \left(\operatorname{arcsh} \frac{z+l/2}{R} - \operatorname{arcsh} \frac{z-l/2}{R} \right)$$
(3.17)

Выразим размеры в относительных единицах – в длинах половины отрезка, например, высоту – $z/(l/2) = \chi_Z$, расстояние до оси $R/(l/2) = \chi_R$.

$$A_{Z} = \frac{\mu I}{4\pi} \left(\operatorname{arcsh} \frac{2Z/l+1}{2R/l} - \operatorname{arcsh} \frac{2Z/l-1}{2R/l} \right)$$
$$A_{Z} = \frac{\mu I}{4\pi} \left(\operatorname{arcsh} \frac{\chi_{Z}+1}{\chi_{R}} - \operatorname{arcsh} \frac{\chi_{Z}-1}{\chi_{R}} \right)$$
(3,18)

Получаем уравнения отличные как от $A_Z = \frac{l \cdot i}{4\pi R}$. [2, с. 378], так и от $A_Z = -\frac{l}{2\pi\varepsilon_0 c^2} ln R$ [3, с. 284].

На графиках представлены примеры распределения вектор-потенциала в пространстве в функции от относительных расстояний от центра проводника в радиальном направлении и от расстояния от центра проводника вдоль его оси.

Рис. 13. График распределения магнитного потенциала отрезка проводника при перемещении вдоль оси на расстоянии от оси, равном 10% от длины проводника

Рис. 14. Графики распределения потенциала отрезка проводника против его середины, и на расстояниях 0,5-2,0 его длины

3.2.1.2. Найдём **дивергенцию вектора** \vec{A} , полученного нами для отрезка провода. Оператор дивергенции в цилиндрических координатах: $div\vec{A} = \frac{1}{r}\frac{\partial}{\partial r}(rA_r) + \frac{1}{r}\frac{\partial A_{\alpha}}{\partial \alpha} + \frac{\partial A_z}{\partial z}$, Получим:

$$div\vec{A} = \frac{\partial A_Z}{\partial z} = \frac{\mu I}{4\pi R} \left(\frac{1}{\sqrt{\left(\frac{z+l/2}{R}\right)^2 + 1}} - \frac{1}{\sqrt{\left(\frac{z-l/2}{R}\right)^2 + 1}} \right) \neq 0.$$
(3.19)

не равна нулю. При больших по сравнению с длиной отрезка l (L) значениях z и/или R дивергенция будет стремиться к нулю. При z=0, то есть на плоскости (x,y) дивергенция при любом R равна нулю.

Уравнение потенциала (3.18) можно записать также в сферических координатах.

Например,

$$A_{R} = \frac{\mu l \cos \theta}{4\pi} \left(\operatorname{arcsh} \left(\operatorname{ctg} \theta + \frac{1}{\chi_{R} \sin \theta} \right) - \operatorname{arcsh} \left(\operatorname{ctg} \theta - \frac{1}{\chi_{R} \sin \theta} \right) \right)$$

$$A_{\theta} = \frac{-\mu I \sin \theta}{4\pi} \left(\operatorname{arcsh} \left(\operatorname{ctg} \theta + \frac{1}{\chi_{R} \sin \theta} \right) - \operatorname{arcsh} \left(\operatorname{ctg} \theta - \frac{1}{\chi_{R} \sin \theta} \right) \right)$$

В [2, с. 380] составляющие того же потенциала записаны в сферических координатах иначе $\dot{A}_R = \frac{\dot{C}\cos\theta e^{-jkR}}{R}, \ \dot{A}_{\theta} = \frac{\dot{C}\sin\theta e^{-jkR}}{R}$ $\dot{A}_{\alpha} = 0$

Оператор дивергенции в сферических координатах:

$$div\vec{A} = \frac{1}{R^2}\frac{\partial}{\partial R}(R^2A_R) + \frac{1}{R\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta A_\theta) + \frac{1}{R\sin\theta}\frac{\partial A_\alpha}{\partial \alpha}.$$

Найдём дивергенцию вектора \vec{A} , которая по принятым предположениям должна быть равна нулю:

$$div\vec{A} = \frac{\dot{c}\cos\theta}{R^2} \frac{\partial}{\partial R} \left(Re^{-jkR} \right) + \frac{\dot{c}e^{-jkR}}{R^2\sin\theta} \frac{\partial}{\partial \theta} (\sin^2\theta) = \frac{\dot{c}\cos\theta e^{-jkR}}{R^2} [1 - jkR + 2] \neq 0.$$
 Она не равна нулю.

3.2.1.3. Определим значение вектора индукции магнитного поля $\vec{B} = rot \vec{A}$. Оператор ротора в цилиндрических координатах:

$$rot_{\alpha}\vec{A} = \frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}, rot_r\vec{A} = \frac{1}{r}\frac{\partial A_z}{\partial \alpha} - \frac{\partial A_\alpha}{\partial z}, rot_z\vec{A} = \frac{1}{r}\left[\frac{\partial}{\partial r}(rA_\alpha) - \frac{\partial A_r}{\partial \alpha}\right]$$

Вектор \vec{A} имеет только одну z составляющую, не зависящую от угла *a*. Применяя к (3.17) получим:

$$B_{\alpha} = rot_{\alpha}\vec{A} = -\frac{\partial A_z}{\partial r} = \frac{\mu l}{4\pi R} \left(\frac{z + l/2}{\sqrt{(z + l/2)^2 + R^2}} - \frac{z - l/2}{\sqrt{(z - l/2)^2 + R^2}} \right) (3.20)$$

Или в относительных единицах:

$$B_{\alpha} = rot_{\alpha}\vec{A} = -\frac{\partial A_{Z}}{\partial r} = \frac{\mu I}{4\pi R} \left(\frac{\chi_{Z} + 1}{\sqrt{(\chi_{Z} + 1)^{2} + (\chi_{R})^{2}}} - \frac{\chi_{Z} - 1}{\sqrt{(\chi_{Z} - 1)^{2} + (\chi_{R})^{2}}} \right) \quad (3.21)$$

При z=0 (в плоскости ху) получается:

$$B_{\alpha} = rot_{\alpha}\vec{A} = \frac{\mu I}{2\pi R} \frac{1}{\sqrt{1 + \left(\frac{2R}{l}\right)^2}}$$
(3.22)

При малом по сравнению с длиной отрезка расстоянии R получаем выражение, совпадающее с индукцией, полученной с применением закона полного тока. **3.2.1.4.** Электрическое поле найдём из $\vec{E} = -grad\varphi_q - \frac{\partial \vec{A}}{\partial t}$. Если статических зарядов нет [10, с. 61] и ток переменный, то с учётом (3.18) получим:

$$E_{Z} = \frac{\partial A_{Z}}{\partial t} = \frac{\mu}{4\pi} \frac{\partial i(t)}{\partial t} \left(\operatorname{arcsh} \frac{\chi_{Z}+1}{\chi_{R}} - \operatorname{arcsh} \frac{\chi_{Z}-1}{\chi_{R}} \right) \quad (3.23)$$

Вектор напряженности электрического поля как и вектор магнитного потенциала направлен вдоль оси z. Радиальная составляющая напряженности электрического поля возбуждаемого током на любых расстояниях от оси тока отсутствует. Это является существенным отличием от поля диполя.

Какое поле, поле отрезка тока или поле диполя является основным в данной точке пространства (а поля отличаются конфигурацией и фазой), зависит от интенсивности каждого из них.

Так может быть определена, например, напряженность электрического поля вокруг провода линии электропередач, шнура тока линейной молнии и оценена возможность возникновения кольцевой «Шаровой» молнии [12].

В этом прямом решении не приходится вводить и определять постоянную интегрирования.

3.2.2. Отрезок провода с осью, не совпадающей с осью координат

Пусть проводник находится на расстоянии r от оси z (рис. 15).

Рис. 15

В цилиндрических координатах координаты точки наблюдения $x = R \cos \alpha$, $y = R \sin \alpha$, z. Точки элементов проводника: $x_i = r \cos \alpha_i$, $y_i = r \sin \alpha_i$, z_i . Радиус-вектор интегрирования R_u запишем сначала в декартовых координатах. $R_u = \sqrt{((x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2)}$. Далее выразив его в цилиндрических координатах, найдём: $R_u = \sqrt{R^2 + r^2 + (z - z_i)^2 - 2Rr\cos(\alpha - \alpha_i)}$. Обозначим $\alpha - \alpha_i = \beta$. Получим потенциал $A_{Z\beta} = \frac{\mu I}{4\pi} \oint \frac{\partial z_i}{\sqrt{R^2 + (z - z_i)^2 + r^2 - 2Rr\cos\beta}}$.

Было в разд. (3.2.1.1) $A_Z = \frac{\mu I}{4\pi} \int_{Z_i} \frac{dz_i}{\sqrt{R^2 + (z - z_i)^2}}.$

Член $(r^2 - 2Rr \cos \beta)$ характеризует смещение отрезка от оси *z*. Интегрирование по *z_i* на конечной длине отрезка можно выполнить аналогично предыдущему. Так может быть определен потенциал отрезка двухпроводной линии (например, при $\beta_1=0$ и $\beta_2=\pi$).

3.2.2.1. Векторный потенциал отрезка трубки с продольным током.

Такой источник поля образован либо элементарными продольными отрезками токов, расположенными на окружности, либо кольцами с элементами токов, направленными вдоль оси (рис 15).

Для элемента элементарного кольца тока на поверхности цилиндра величина *dI* определится $dI = I/2\pi r^* r d\beta = I d\beta/2\pi$. $\vec{A} = \frac{\mu}{4\pi} \int_{\beta} \frac{dI\vec{z}_0}{R_c}$.

Если произвести интегрирование по углу β, то получится потенциал элементарного кольца с поперечными токами. Пропуская промежуточные вычисления, найдём:

$$A_{Z} = \frac{\mu l l}{4\pi^{2}} \iint_{S} \frac{d\chi_{Zi} d\psi}{\sqrt{(\chi_{R} + 1)^{2} + \gamma^{2} + (\chi_{Z} - \chi_{Zi})^{2} - 4\chi_{R} \sin^{2}\psi}}$$

Однако на пути второго интегрирования возникают значительные трудности. Не удаётся выразить этот интеграл в известных функциях.

3.2.3. Векторный потенциал кольцевого тока

Теперь ток течёт по окружности (рис. 16). Попытка найти векторный потенциал кольцевого тока сделана в [3, с. 290], Потенциал найден только вдали от кольца методом аналогии с потенциалом электростатики. Несколько полнее приведено решение в [11, с. 303].

Выберем ортогональную цилиндрическую систему координат. Теперь элемент интегрирования не скаляр, а вектор $d\vec{l}$, Вектор тока в этой системе имеет только одну альфовую проекцию. Такую же составляющую должен иметь и вектор \vec{A} .

Радиус интегрирования – расстояние от точки наблюдения до точки расположения элементарного тока запишем сначала в декартовых координатах.

Координаты точки наблюдения: x, y, z. Координаты элемента кольца: x_i, y_i, z_i. Проекции разности координат: (x-x_i), (y-y_i), (z-z_i).

Расстояние $R_u = \sqrt{((x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2)}$ Связь цилиндрических координат и декартовых: $x = R \cos \alpha$, $y = R \sin \alpha$,

$$z = z. x_i = r \cos \alpha_i, y_i = r \sin \alpha_i, Z_i.$$

 $\sqrt{R^2 \cos^2 \alpha - 2Rr \cos \alpha \cos \alpha_i + r^2 \cos^2 \alpha_i + R^2 \sin^2 \alpha - 2Rr \sin \alpha \sin \alpha_i + r^2 \sin^2 \alpha_i + (z - z_i)^2 R_i}$
 $= \sqrt{R^2 + r^2 - 2Rr \cos(\alpha - \alpha_i) + (z - z_i)^2}.$ Обозначим $\alpha - \alpha_i = \beta$, будем
иметь $R_u = \sqrt{R^2 + r^2 - 2R} r \cos \beta + (z - z_i)^2.$ Выразим подко-
ренное выражение в относительных единицах. Обозначим; $\frac{R}{r} = \chi_R,$
 $\frac{z}{r} = \chi_Z, \frac{z_i}{r} = \chi_{Zi}$ вынесем *r* за знак радикала.

$$R_{u} = r\sqrt{\chi_{R}^{2} + 1 + (\chi_{Z} - \chi_{Zi})^{2} - 2\chi_{R}\cos\beta}$$
(3.24)

при z_i равном 0 кольцо расположено в плоскости x, y.

Для радиуса интегрирования получилась компактная запись.

Радиус интегрирования имел такой же вид при изучении заряженного кольца. Вклад элементов заряженного кольца в образование потенциала зависел от ориентации кольца в пространстве и не зависел от ориентации в пространстве элементов интегрирования. В создании потенциала тока дополнительно важна ориентация каждого элемента тока в пространстве.

С учетом угла β , проекции отрезка элемента тока на направления R^0 и α^0 будут $dl_R = rd\beta \sin\beta$, $dl_\alpha = rd\beta \cos\beta$. Как и раньше произведем интегрирование по углу β .

$$A_{\alpha} = \frac{\mu}{4\pi} \int_{\beta} \frac{I \cdot r \cos\beta \cdot d\beta}{R_{u}} = \frac{\mu I}{4\pi} \int_{\beta} \frac{\cos\beta \cdot d\beta}{\sqrt{\chi_{R}^{2} + \chi_{Z}^{2} + 1 - 2\chi_{R}\cos\beta}} = \frac{\mu I}{4\pi} \int_{\beta} \frac{\cos\beta \cdot d\beta}{\sqrt{a - b\cos\beta}},$$

где $a = (\chi_R^2 + 1 + \chi_Z^2), b = 2\chi_R$, Сначала преобразуем этот интеграл:

$$A_{\alpha} = \frac{\mu I}{4\pi} \int_{\beta} \frac{\cos\beta \cdot d\beta}{\sqrt{a - b\cos\beta}} = \frac{\mu I}{-4\pi \cdot b} \int_{\beta} \frac{ad\beta - b\cos\beta \cdot d\beta - ad\beta}{\sqrt{a - b\cos\beta}} = \frac{-\mu I}{4\pi \cdot b} \int_{\beta} \frac{ad\beta - b\cos\beta \cdot d\beta}{\sqrt{a - b\cos\beta}} - \frac{-\mu I}{\sqrt{a - b\cos\beta}} + \frac{-\mu I}{\sqrt{a - b\cos\beta}} + \frac{-\mu I}{\sqrt{a - b\cos\beta}} + \frac{-\mu I}{\sqrt{a - b\cos\beta}} = \frac{-\mu I}{\sqrt{a - b\cos\beta}} + \frac{-\mu I}{\sqrt{$$

$$-\frac{-\mu I}{4\pi}\frac{a}{b}\int\frac{d\beta}{\sqrt{a-b\cos\beta}} = \frac{\mu I}{4\pi}\frac{a}{b}\int\frac{d\beta}{\sqrt{a-b\cos\beta}} - \frac{\mu I}{4\pi b}\int\sqrt{a-b\cos\beta} \cdot d\beta$$

Он свёлся к двум интегралам, напоминающим об эллиптической форме.

Далее воспользуемся тригонометрической формулой:

$$\cos \beta = \cos^{2} \frac{\beta}{2} - \sin^{2} \frac{\beta}{2} = 1 - 2 \sin^{2} \frac{\beta}{2}.$$
 Получим
$$A_{\alpha} = \frac{\mu I}{4\pi b} \int_{0}^{2\pi} \frac{d\beta}{\sqrt{a - b(1 - 2\sin^{2}\beta/2)}} - \frac{\mu I}{4\pi b} \int_{0}^{2\pi} \sqrt{a - b + 2b\sin^{2} \frac{\beta}{2}} d\beta$$

Это эллиптические интегралы, однако, перед *sin²β/2* стоит знак плюс.

Сделаем замену переменных:

$$\frac{\beta}{2} = \psi + \frac{\pi}{2}, \psi = \left(\frac{\beta}{2} - \frac{\pi}{2}\right), d\beta = 2d\psi,$$
$$\sin^2 \frac{\beta}{2} = 1 - \cos^2 \frac{\beta}{2} = 1 - \sin^2 \psi$$

Пределы $\beta = 0$, $\psi = -\pi/2$; $\beta = 2\pi$, $\beta/2 = \pi$; $\psi = \pi/2$. $A_{\alpha} = \frac{\mu I}{4\pi} \int_{\beta} \frac{\cos \beta \cdot d\beta}{\sqrt{a - b \cos \beta}} = \frac{\mu I}{4\pi} \frac{a}{b} \int_{\psi} \frac{2d\psi}{\sqrt{a - b + 2b(1 - \sin^2 \psi)}} - \frac{\mu I}{4\pi} \frac{2}{b} \int_{\psi} \sqrt{a + b - 2b \sin^2 \psi} d\psi$

Вынося за знак корня (*a+b*), получим:

$$A_{\alpha} = \frac{\mu I}{4\pi} \left(\frac{a}{b} \frac{2}{\sqrt{a+b}} \int_{\psi} \frac{d\psi}{\sqrt{1-k^2 \sin^2 \psi}} - \frac{2\sqrt{a+b}}{b} \int_{\psi} \sqrt{1-k^2 \sin^2 \psi} \, d\psi \right) (3.25)$$

Интегралы табличные. Интеграл $\int_{0}^{\pi/2} \frac{dx}{\sqrt{1-k^2 \sin^2 x}} = F$, часто обозначают К, второй $\int_{0}^{\pi/2} \sqrt{1-k^2 \sin^2 x} \cdot dx = E$, есть полные эллиптические интегралы первого и второго рода.

Далее
$$a + b = (\chi_R^2 + 1 + \chi_Z^2 + 2\chi_R) = ((\chi_R + 1)^2 + \chi_Z^2), k^2 =$$

 $= \frac{2b}{a+b} = \frac{4\chi_R}{(\chi_R + 1)^2 + \chi_Z^2}$

 $k = \sqrt{\frac{2b}{a+b}} = \frac{2\sqrt{\chi_R}}{\sqrt{(\chi_R+1)^2 + \chi_Z^2}},$ такой же, как в предыдущих решениях (3.26)

$$\frac{2\sqrt{a+b}}{\sqrt{(\chi_R+1)^2 + \chi_Z^2}}$$
(3.20)

Обозначим
$$\frac{2\sqrt{a+b}}{b} = \frac{\sqrt{(\chi_R+1)^2 + \chi_Z^2}}{\chi_R} = k_E$$
 другой множитель (3.27)

$$\frac{2a}{b\sqrt{a+b}} = \frac{(\chi_R^2 + 1 + \chi_Z^2)}{\chi_R \sqrt{(\chi_R^2 + 1 + \chi_Z^2 + 2\chi_R)}} = \frac{(\chi_R^2 + 1 + \chi_Z^2)}{\chi_R \sqrt{(\chi_R + 1)^2 + \chi_Z^2}} = k_F.$$

$$k_F = \frac{k(\chi_R^2 + 1 + \chi_Z^2)}{2\chi_R \sqrt{\chi_R}}$$
(3.28)

Окончательно получим

$$A_{\alpha} = \frac{\mu I}{2\pi} \left(k_F \int_0^{\pi/2} \frac{d\psi}{\sqrt{1 - k^2 \sin^2 \psi}} - k_E \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \psi} \, d\psi \right),$$
или
$$A_{\alpha} = \frac{\mu I}{2\pi r} (k_F F - k_E E)$$
(3.29)

Или
$$A_{\alpha} = \frac{\mu I}{2\pi} \frac{1}{\sqrt{(\chi_R + 1)^2 + \chi_Z^2}} \frac{1}{\chi_R} \Big((\chi_R^2 + 1 + \chi_Z^2) F - ((\chi_R + 1)^2 + \chi_Z^2) E \Big)$$
(3.30)

Элемент тока dl имеет составляющую вдоль радиуса $dl_R = rd\beta \sin\beta$. Проекция вектор-потенциала на направление R.

$$A_R = \frac{\mu I}{4\pi} \int_{\beta} \frac{\sin\beta \cdot d\beta}{\sqrt{\chi_R^2 + \chi_Z^2 + 1 - 2\chi_R \cos\beta}} = 0$$

Это интеграл табличный. Его значение при изменении β в пределах от 0 до 2π равно 0. То есть радиальная составляющая потенциала, как и предполагалось, равна 0.

На рисунке 17 представлена картина поля векторного потенциала в плоскости витка. Контурными стрелками обозначено поле потенциала меньшей интенсивности. Силовые линии здесь – окружности. В пространстве эквипотенциальные поверхности напоминают тороидальные поверхности (бублик) не кругового сечения.

Рис. 17. Векторный потенциал кольцевого тока

Так же выглядит векторный потенциал стержневого магнита. Вихрь вокруг магнитного стержня.

В теории электрических машин термин «вращающееся магнитное поле» дожжен быть заменён на термин «вращающееся поле магнитного потенциала». При этом картина, представленного на рисунке потенциала, перемещаться в одном из направлений в плоскости рисунка.

Графики представляют распределение вектор-потенциала в пространстве в функции от относительных расстояний точки наблюдения от оси кольца и от расстояния над плоскостью кольца.

Рис. 18

Рис. 19

Рис. 20. Графики распределения векторного потенциала кольца с током

Полученные решения дают картину полей независящую от абсолютных геометрических размеров, а только от относительных. Это означает что, например, при токе 5 А поле будет одинаковым у кольца диаметром 10 см и кольца диаметром 1 м, если мы будем измерять его на расстоянии 20 см и 2 м соответственно. При этом предполагается, что размеры сечения провода значительно меньше радиуса кольца.

3.2.3.1. Найдем дивергенцию вектора магнитного потенциала кольца.

Оператор дивергенции в цилиндрических координатах имеет вид: $div\vec{A} = \frac{1}{r}\frac{\partial}{\partial r}(rA_r) + \frac{1}{r}\frac{\partial A_{\alpha}}{\partial \alpha} + \frac{\partial A_z}{\partial z}$. Сам вектор потенциал имеет только одну альфовую составляющую (3.29), не зависящую от угла альфа. То есть дивергенция магнитного вектор-потенциала кольцевого тока будет равна нулю независимо от величины и направления удаления от кольцевого тока.

3.2.3.2. Вектор магнитной индукции – В.

Определим теперь индукцию магнитного поля $\vec{B} = rot \vec{A}$. Общая форма оператора ротора в цилиндрических координатах:

$$rot_{\alpha}\vec{A} = \frac{\partial A_R}{\partial z} - \frac{\partial A_Z}{\partial R}, rot_R\vec{A} = \frac{1}{R}\frac{\partial A_Z}{\partial \alpha} - \frac{\partial A_\alpha}{\partial z}, rot_Z\vec{A} = \frac{1}{R}\left[\frac{\partial}{\partial R}(RA_\alpha) - \frac{\partial A_R}{\partial \alpha}\right]$$

При наличии только одной составляющей векторного потенциала А_a, независящей от угла альфа будем иметь

$$B_{R} = rot_{R}\vec{A} = -\frac{\partial A_{\alpha}}{\partial z},$$

$$B_{Z} = rot_{Z}\vec{A} = \frac{1}{R} \left[\frac{\partial}{\partial R} (RA_{\alpha}) \right] = \frac{1}{R} \left[R \frac{\partial}{\partial R} A_{\alpha} + A_{\alpha} \right] = \frac{\partial A_{\alpha}}{\partial R} + \frac{A_{\alpha}}{R}$$

3.2.3.2.1. Радиальная составляющая – *B_R*, перпендикулярная оси z.

Принятые обозначения $z = \chi_z r$, $\partial z = r \partial \chi_z$ $R = \chi_R r$, $\partial R = r \partial \chi_R$.

$$B_R = rot_R \vec{A} = -\frac{\partial A_\alpha}{\partial z} = -\frac{\mu I}{2\pi r} \frac{\partial}{\partial z} (k_F F - k_E E) = -\frac{\mu I}{2\pi r} \left(k_F \frac{\partial F}{\partial \chi_Z} + \frac{\partial F}{\partial \chi_Z} + \frac{\partial F}{\partial \chi_Z} \right)$$

 $+F\frac{\sigma\kappa_F}{\partial\chi_Z}-k_E\frac{\sigma_E}{\partial\chi_Z}-E\frac{\sigma\kappa_E}{\partial\chi_Z}$). Рассмотрим последовательно члены этой суммы.

3.2.3.2.1.1. Первый член суммы $k_F \frac{\partial F}{\partial \chi_Z} = B_{RI}$, определяется тремя входящими параметрами:

$$k_F = \frac{(\chi_R^2 + 1 + \chi_Z^2)}{\chi_R \sqrt{(\chi_R + 1)^2 + \chi_Z^2}}, F = \int_0^{\pi/2} \frac{d\psi}{\sqrt{1 - k^2 \sin^2 \psi}}, k^2 = \frac{4\chi_R}{(\chi_R + 1)^2 + \chi_Z^2}.$$

Аналогично (раздел 3.1.4.1.),

$$\frac{\partial F}{\partial \chi_Z} = \frac{\partial}{\partial \chi_Z} \int_0^{\pi/2} \frac{\partial \psi}{\sqrt{1-k^2 \sin^2 \psi}} = \frac{1}{2k^2} \frac{\partial (k^2)}{\partial \chi_Z} \left(\frac{1}{1-k^2} E(k) - F(k) \right).$$

Весь первый член суммы будет:

$$k_F \frac{\partial F}{\partial \chi_Z} = \frac{\chi_Z(\chi_R^2 + 1 + \chi_Z^2)}{\chi_R \sqrt{((\chi_R + 1)^2 + \chi_Z^2)^3}} \Big[F(\psi, k) - \frac{1}{1 - k^2} E(\psi, k) \Big].$$
 И с учетом
$$\frac{1}{1-k^2} = \frac{1}{1-\frac{4\chi_R}{(\chi_R+1)^2+\chi_Z^2}} = \frac{(\chi_R+1)^2+\chi_Z^2}{(\chi_R+1)^2+\chi_Z^2-4\chi_R} = \frac{(\chi_R+1)^2+\chi_Z^2}{(\chi_R-1)^2+\chi_Z^2}$$
окончательно

получим

$$k_F \frac{\partial F}{\partial \chi_Z} = \frac{-\chi_Z(\chi_R^2 + 1 + \chi_Z^2)}{\chi_R \sqrt{((\chi_R + 1)^2 + \chi_Z^2)}} \left[\frac{1}{(\chi_R - 1)^2 + \chi_Z^2} E - \frac{1}{(\chi_R + 1)^2 + \chi_Z^2} F \right].$$

3.2.3.2.1.2. Далее второй член суммы:
$$F \frac{\partial k_F}{\partial \chi_Z} = B_{R2}$$
, где
 $k_F = \frac{\left(\chi_R^2 + 1 + \chi_Z^2\right)}{\chi_R \sqrt{(\chi_R + 1)^2 + \chi_Z^2}} \cdot \frac{\partial k_F}{\partial \chi_Z} = \frac{\chi_Z}{\chi_R \sqrt{(\chi_R + 1)^2 + \chi_Z^2}} \left(2 - \frac{(\chi_R^2 + 1 + \chi_Z^2)}{((\chi_R + 1)^2 + \chi_Z^2)}\right)$
и $F \frac{\partial k_F}{\partial \chi_Z} = \frac{\chi_Z (\chi_R^2 + 4\chi_R + 1 + \chi_Z^2)}{\chi_R \sqrt{((\chi_R + 1)^2 + \chi_Z^2)^3}} F.$

3.2.3.2.1.3. Находим предпоследний член суммы. $k_E \frac{\partial E}{\partial \gamma_7} = B_{R3}$, где $k_E = \frac{\sqrt{(\chi_R + 1)^2 + \chi_Z^2}}{\chi}, E = \int_0^{\pi/2} \sqrt{1 - k^{-2} \sin^2 \psi} \, d\psi.$ $\frac{\partial E}{\partial \chi_Z} = \frac{1}{2} \int_0^{\pi/2} \frac{-\sin^2 \psi}{\left| 1 - k^{-2} \sin^2 \psi \right|} \frac{\partial (k^2)}{\partial \chi_Z} d\psi = \frac{1}{2k^2} \frac{\partial (k^2)}{\partial \chi_Z} \int_0^{\pi/2} \frac{-1 + 1 - k^2 \sin^2 \psi}{\left| 1 - k^{-2} \sin^2 \psi \right|} d\psi.$ Теперь нет синуса в числителе и $\frac{\partial E}{\partial \chi_Z} = \frac{1}{2k^2} \frac{\partial (k^2)}{\partial \chi_Z} (E - F).$ Определив производную $\frac{\partial (k^2)}{\partial \chi_Z} = \frac{-4\chi_R 2\chi_Z}{\left((\chi_R+1)^2+\chi_Z^2\right)^2}$, окончательно получим $k_E \frac{\partial E}{\partial \chi_Z} = \frac{\chi_Z}{\chi_P \sqrt{((\chi_P+1)^2 + \chi_Z^2)}} (F - E),$

3.2.3.2.1.4. И последний, четвёртый член суммы: $E \frac{\partial k_E}{\partial r_{\pi}} = B_{R4}$, где $k_E = \frac{\sqrt{(\chi_R + 1)^2 + \chi_Z^2}}{\chi_R}$, его производная $\frac{\partial k_E}{\partial \chi_Z} = \frac{1}{2\chi_R} \frac{2\chi_Z}{\sqrt{(\chi_R + 1)^2 + \chi_Z^2}}$ $E \frac{\partial k_E}{\partial \chi_Z} = \frac{\chi_Z}{\chi_{R_o} / (\chi_R + 1)^2 + \chi_Z^2} E.$ В двух последних E-E=0. Остаётся F. $k_E \frac{\partial E}{\partial \chi_Z} + E \frac{\partial k_E}{\partial \chi_Z} = \frac{\chi_Z}{\chi_R \sqrt{(\chi_R + 1)^2 + \chi_Z^2}} F$

Теперь суммируем члены B_R , отдельно E и F:

$$B_{R} = -\frac{\mu I}{2\pi r^{2}} \frac{k\chi_{Z}}{2\chi_{R}\sqrt{\chi_{R}}} \left(\frac{-(\chi_{R}^{2}+1+\chi_{Z}^{2})}{(\chi_{R}-1)^{2}+\chi_{Z}^{2}} E + \frac{(\chi_{R}^{2}+1+\chi_{Z}^{2})}{(\chi_{R}+1)^{2}+\chi_{Z}^{2}} F + \frac{(\chi_{R}^{2}+4\chi_{R}+1+\chi_{Z}^{2})}{((\chi_{R}+1)^{2}+\chi_{Z}^{2})} F - F \right)$$

$$B_{R} = \frac{\mu I}{2\pi r} \frac{1}{\sqrt{(\chi_{R}+1)^{2}+\chi_{Z}^{2}}} \frac{\chi_{Z}}{\chi_{R}} \left(-F + \frac{(\chi_{R}^{2}+1+\chi_{Z}^{2})}{(\chi_{R}-1)^{2}+\chi_{Z}^{2}} E \right)$$
(3.31)

На значительном удалении χ>1 единицей можно пренебречь, в скобках получается просто разность двух эллиптических интегралов.

Рис. 21

График распределения горизонтальной составляющей магнитного поля. Уже на расстоянии от кольца равном радиусуR/r = 2, радиальная составляющая магнитного поле практически равно нулю.

На плоскости (z=0) радиальная (горизонтальная) составляющая индукции на любом расстоянии от центра равна нулю.

3.2.3.2.2. Есть ещё вторая проекция ротора вектора *A*, вертикальная, зетовая, более сложная.

$$\begin{aligned} \operatorname{rot}_{Z}\vec{A} &= \frac{1}{R} \left[\frac{\partial}{\partial R} (RA_{\alpha}) - \frac{\partial A_{R}}{\partial \alpha} \right] = B_{Z}, \operatorname{rot}_{Z}\vec{A} = \frac{1}{R} \left[\frac{\partial}{\partial R} (RA_{\alpha}) \right], \\ \operatorname{rot}_{Z}\vec{A} &= \frac{1}{R} \left[A_{\alpha} + R \frac{\partial A_{\alpha}}{\partial R} \right] \\ B_{Z} &= \operatorname{rot}_{Z} \vec{A} = \frac{\partial A_{\alpha}}{\partial R} + \frac{A_{\alpha}}{R}, \quad \text{В} \quad \text{относительных} \quad \text{единицах} \\ R &= \chi_{R}r, \; \partial R = r\partial\chi_{R}. \\ B_{Z} &= \frac{\partial A_{\alpha}}{\partial R} + \frac{A_{\alpha}}{R} = \frac{\mu I}{2\pi r^{2}} \left(\frac{\partial}{\partial \chi_{R}} (k_{F}F - k_{E}E) + \frac{k_{F}F}{\chi_{R}} - \frac{k_{E}E}{\chi_{R}} \right) \\ B_{Z} &= \frac{\mu I}{2\pi r^{2}} \left(k_{F} \frac{\partial F}{\partial \chi_{R}} + F \frac{\partial k_{F}}{\partial \chi_{R}} - k_{E} \frac{\partial E}{\partial \chi_{R}} - E \frac{\partial k_{E}}{\partial \chi_{R}} + \frac{k_{F}F}{\chi_{R}} - \frac{k_{E}E}{\chi_{R}} \right), \text{ стало 6} \end{aligned}$$

членов суммы.

3.2.3.2.2.1. Начнём с $k_F \frac{\partial F}{\partial \chi_R} = B_{Zl}$, этот член суммы определяется тремя входящими параметрами:

$$k_F = \frac{(\chi_R^2 + 1 + \chi_Z^2)}{\chi_R \sqrt{(\chi_R + 1)^2 + \chi_Z^2}}, F = \int_0^{\pi/2} \frac{d\psi}{\sqrt{1 - k^2 \sin^2 \psi}}, k^2 = \frac{4\chi_R}{(\chi_R + 1)^2 + \chi_Z^2}.$$
 Диф-

ференцируем интеграл F, найдём

$$\frac{\partial F}{\partial \chi_R} = \frac{\partial}{\partial \chi_R} \int_0^{\pi/2} \frac{\partial \psi}{\sqrt{1 - k^2 \sin^2 \psi}} = \frac{1}{2} \int_0^{\pi/2} \frac{\sin^2 \psi}{\sqrt{(1 - k^2 \sin^2 \psi)^3}} \frac{\partial(k^2)}{\partial \chi_R} \partial \psi, \text{ далее}$$
$$\int_0^{\pi/2} \frac{\sin^2 \psi d\psi}{\sqrt{(1 - k^2 \sin^2 \psi)^3}} = \frac{1}{k^2} \left[\frac{1}{1 - k^2} E(\psi, k) - F(\psi, k) \right]. \text{ Находим про-$$

изводную
$$\frac{\partial(k^2)}{\partial\chi_R} = 4 \frac{\chi_R^2 + 2\chi_R + 1 + \chi_Z^2 - 2\chi_R^2 - 2\chi_R}{((\chi_R + 1)^2 + \chi_Z^2)^2} = 4 \frac{-\chi_R^2 + 1 + \chi_Z^2}{((\chi_R + 1)^2 + \chi_Z^2)^2}$$
 Её

можно вынести за знак интеграла и весь первый член суммы *B*_{Z1} будет:

$$k_F \frac{\partial F}{\partial \chi_R} = 2 \frac{(\chi_Z^2 + 1 - \chi_R^2)(\chi_Z^2 + 1 + \chi_R^2)}{\chi_R \sqrt{((\chi_R + 1)^2 + \chi_Z^2)^5}} \frac{1}{k^2} \Big[\frac{1}{1 - k^2} E(\psi, k) - F(\psi, k) \Big], \quad \text{Под-}$$

ставляя значения k, найдем $\frac{1}{1-k^2} = \frac{(\chi_R+1)^2 + \chi_Z^2}{(\chi_R-1)^2 + \chi_Z^2}$ и $k_F \frac{\partial F}{\partial \chi_R} = \frac{(\chi_Z^2+1-\chi_R^2)(\chi_R^2+1+\chi_Z^2)}{2\chi_R^2 \sqrt{(\chi_R+1)^2 + \chi_Z^2}} \left[\frac{1}{(\chi_R-1)^2 + \chi_Z^2} E(\psi, k) - \frac{1}{((\chi_R+1)^2 + \chi_Z^2)} F(\psi, k) \right]$ **3.2.3.2.2.2.** Вторая составляющая суммы $B_{Z2} = F \frac{\partial k_F}{\partial \chi_R}$ определяется теми же составными параметрами.

Группируя члены с эллиптическим интегралом Е, приводя подобные члены (20 шт.), найдем $2\chi_R^2 \frac{-(\chi_R^2 - 1 + \chi_Z^2)}{(\chi_R - 1)^2 + \chi_\tau^2} E$

Группируя члены с эллиптическим интегралом F, приводя подобные члены (32 шт.), найдем $2\chi_R^2 F$. Такое парадоксальное сокращение числа подобных членов, видимо, свидетельствует о какихто общих свойствах или дифференцирования эллиптических интегралов, или неких свойствах векторных функций решаемой задачи. Окончательно имеем:

$$B_{Z} = \frac{\mu I}{2\pi r} \frac{1}{\sqrt{(\chi_{R}+1)^{2} + \chi_{Z}^{2}}} \left(F - \frac{(\chi_{R}^{2}-1+\chi_{Z}^{2})}{(\chi_{R}-1)^{2} + \chi_{Z}^{2}} E \right)$$
(3.32)

Рис. 22

Рис. 23

Графики распределения осевой (вертикальной) составляющей магнитного поля в плоскости кольца и в плоскости на высоте 20% от значения радиуса. Поле **В** на этой высоте почти равномерное, то есть силовые линии долго не расходятся.

При построении большего числа плоскостей можно получить точную диаграмму направленности каждой геометрической формы источника поля в любой точке пространства.

3.2.3.3. Поток вектора магнитной индукции через заданную поверхность может быть найдём без вычисления поля в каждой точке пространства. По теореме Стокса достаточно знать значение вектора потенциала на контуре, на который опирается эта поверхность. $\Phi = \int_{S} \vec{B} d\vec{s} = \int_{S} rot \vec{A} d\vec{s} = \oint_{L} \vec{A} d\vec{l}$. Например, поток вектора магнитной индукции через кольцо, поднятое над поверхностью контура с током равен:

$$\Phi = \frac{\mu \cdot i(t)}{2\pi} \oint (k_F F - k_E E) dl = \frac{\mu \cdot i(t)}{2\pi} (k_F F - k_E E) \cdot 2\pi \cdot r = \mu \cdot r(k_F F - k_E E) \cdot i(t)$$
(3.33)

Если ток синусоидальный $i = I_m \sin \omega t$, то напряжение между выводами витка будет $u = \frac{d\Phi}{dt} = \omega \cdot \mu \cdot r \cdot (k_F F - k_E E) \cdot I_m \cos \omega t$, что соответствует $U_m = \omega M I_m$. Похожее решение приведено в [2, с. 359.].

По справочнику: «Расчёт индуктивностей» [13, с. 186]. $M = \frac{\mu}{4\pi}rF_L$. То есть $F_L = 4\pi \cdot (k_FF - k_EE)$. Сравнение значений F_L , приведенных в таблице справочника и вычисленных по нашей формуле в широком диапазоне изменений высоты витка (более 10 раз) совпадает с точностью $\pm 1\%$.

3.2.3.4. Векторы напряженности электрического поля. Вектор напряженности электрического поля найдём из: $\vec{E} = -grad\varphi - \frac{\partial \vec{A}}{\partial t} = \vec{E}_q - \vec{E}_{uho}$.

Введенное автором обозначение $\frac{\partial \vec{A}}{\partial t} = \vec{E}_{uh\partial}$, представляет собой закон Фарадея в дифференциальной форме.

Если статических зарядов нет и ток переменный, то

$$E(t) = \frac{\mu}{2\pi} (k_F F - k_E E) \frac{di}{dt}, \qquad (3.34)$$

3.2.3.5. В сферических координатах $R = r\chi_R = R_{c\phi} \sin \theta$, $z = r\chi_Z = R_{c\phi} \cos \theta$. $\chi_R = \frac{R_{c\phi}}{r \sin \theta}$, $\chi_Z = \frac{R_{c\phi}}{r \cos \theta}$, $R_{c\phi} = r\sqrt{\chi_R^2 + \chi_Z^2}$

Рис. 24.

При больших по сравнению с размерами кольца расстояниях $\chi_R > 1$ главную роль играет относительное удаление точки наблюдения от кольца. $\sqrt{\chi_R^2 + \chi_Z^2} = R_{c\phi}/r$.

$$A_{\alpha} = \frac{\mu I}{2\pi} \left(\frac{\left(\left(R_{c\phi}/r \right)^{2} + 1 \right)}{\left(R_{c\phi}/r \right) \sin \theta \sqrt{\left(R_{c\phi}/r \right)^{2} + 1 + 2\left(R_{c\phi}/r \right) \sin \theta}} F - \frac{\sqrt{\left(R_{c\phi}/r \right)^{2} + 1 + 2\left(R_{c\phi}/r \right) \sin \theta}}{\left(R_{c\phi}/r \right) \sin \theta} E \right)$$

Параметр $k^{2} \frac{4\chi_{R}}{(\chi_{R}+1)^{2} + \chi_{Z}^{2}} = k^{2}$ при $\chi_{R} > 1$ $k^{2} = \frac{4\chi_{R}r^{2}}{R_{c\phi}^{2}} = \frac{4Rr}{R_{c\phi}^{2}} = \frac{4r}{R_{c\phi}^{2}}$

3.2.4. Векторный потенциал соленоида и тора

=

Сложенные друг на друга «в стопку» кольца образуют соленоид. Поле соленоида будет равно интегралу от суммы потенциалов колец. На этом пути возникают серьёзные математические трудности. Воспользуемся готовыми приближёнными решениями поля векторного потенциала $A = \frac{\mu_0 n l r^2}{2} \frac{1}{R^2}$. Поле вектора магнитной индукции вне соленоида B = rotA = 0. «Итак, магнитное поле вне очень длинного соленоида действительно равно нулю, хотя векторный потенциал нулю не равен» [3, с. 285].

Аналогично, электрическое поле внутри заряженной сферической поверхности равно нулю, хотя электрический потенциал нулю не равен (раздел 3.1.2).

Очень длинный соленоид не совсем реальная конструкция. Такая же картина полей имеется вокруг вполне реальной тороидальной катушки. Вне катушки магнитное поле равно нулю, что легко проверяется применением закона полного тока. Однако электрическое поле не равно нулю, иначе в витках наружной (вторичной) обмотки тороидального трансформатора отсутствовало бы напряжение $u = \oint \vec{E} d\vec{l}$.

3.3. Общие замечания к разделу примеры потенциалов

В таблицу сведены результаты выводов формул для определения полей потенциалов и векторов электрического и магнитного полей для источников кольцевой формы.

Таблица 3

	Общий коэффициент	Коэффициент перед эллиптическим интегралом F	Коэффициент перед эллиптическим интегралом Е
Электриче- ский потен- циал заря- женного кольца	$\frac{q}{2\pi^2\varepsilon_0 r}\frac{1}{\sqrt{(\chi_R+1)^2+\chi_Z^2}}$	1	0
Радиальная составляю- щая элек- трического поля	$\frac{q}{4\pi^2\varepsilon_0r^2}\frac{1}{\sqrt{(\chi_R+1)^2+\chi_Z^2}}$	$\frac{1}{\chi_R}$	$\frac{1}{\chi_R} \frac{(\chi_R^2 - 1 - \chi_Z^2)}{(\chi_R - 1)^2 + \chi_Z^2}$
Аксиальная составляю- щая элек- трического поля	$\frac{q}{2\pi^2\varepsilon_0r^2}\frac{1}{\sqrt{(\chi_R+1)^2+\chi_Z^2}}$	$\frac{\chi_Z}{(\chi_R+1)^2+\chi_Z^2}$	$-\frac{2\chi_Z}{(\chi_R-1)^2+\chi_Z^2}$
Магнитный потенциал кольца с током	$\frac{\mu I}{2\pi} \frac{1}{\sqrt{(\chi_R+1)^2+\chi_Z^2}}$	$\frac{1}{\chi_R}(\chi_R^2+1+\chi_Z^2)$	$-\frac{1}{\chi_{R}}((\chi_{R}+1)^{2} + \chi_{Z}^{2})$
Радиальная составляю- щая магнит- ного поля	$\frac{\mu l}{2\pi r} \frac{1}{\sqrt{(\chi_R+1)^2 + \chi_Z^2}}$	$-\frac{\chi_Z}{\chi_R}$	$\frac{\chi_Z}{\chi_R} \frac{(\chi_R^2 + 1 + \chi_Z^2)}{(\chi_R - 1)^2 + \chi_Z^2}$
Аксиальная составляю- щая магнит- ного поля	$\frac{\mu l}{2\pi r} \frac{1}{\sqrt{(\chi_R + 1)^2 + \chi_Z^2}}$	1	$-\frac{(\chi_R^2 - 1 + \chi_Z^2)}{(\chi_R - 1)^2 + \chi_Z^2}$

Формулы потенциалов и полей имеют одинаковую структуру: 1) все имеют множитель $\frac{1}{\sqrt{(\chi_R+1)^2+\chi_Z^2}}$, который на расстояниях зна-

чительно больших радиуса кольца $\chi_R >> 1$, представляет собой просто обратную величину расстояния от центра кольца до точки наблюдения $r\sqrt{\chi_R^2 + \chi_Z^2} = R_{c\phi}$, 2) содержат эллиптические интегралы первого и второго рода с параметром k², одинаковым для всех скаляров и векторов поля. 3) перед этими интегралами стоит оригинальный множитель из относительных размеров (Таблица 3).

Для учёта соотношения длины волны и размеров источника решения должны производиться с учётом запаздывания.

$$\varphi(x,y,z,t) = \int \frac{\rho(t-r_{X\rho}/c)}{4\pi\varepsilon_0 r_{X\rho}} dV_\rho \ \vec{A}(x,y,z,t) = \int \frac{\mu_0 \cdot \vec{j}(t-r_{Xj}/c)}{4\pi \cdot r_{Xj}} dV_j.$$

<u>Изменение потенциала</u> в пространстве ($\vec{B} = rot \vec{A}, \vec{E} = -grad\phi$) и/или во времени $\vec{E}_{uh\partial} = \frac{\partial \vec{A}}{\partial t}$ является сутью существования электрического и магнитного полей.

В прежней теории поля имеется ничем не подкреплённое предположение, что $div\vec{A} = 0$. В действительности это предположение для ряда источников не выполняется

Более того выражение $div\vec{A} = -\frac{1}{v^2}\frac{\partial\varphi}{\partial t}$ является одним из основных уравнений для описания процессов распространения электромагнитных изменений в свободном пространстве.

Список цитируемой литературы

1. Тамм И.Е. Основы теории электричества. – М.: Наука, 2003.

2. Круг К.А. Основы электротехники. – М.: ГЭИ, 1952.

3. Фейнман Р. Фейнмановские лекции по физике / Р. Фейнман, Р. Лейтон, М. Сэндс. – Том 5. – М.: Мир, 1966.

4. Фейнман Р. Фейнмановские лекции по физике / Р. Фейнман, Р. Лейтон, М. Сэндс. – Том 6. – М.: Мир, 1966.

5. Черкашин Ю.С. Система согласованных уравнений электродинамики // Наука и образование в жизни современного общества: сборник научных трудов. Том 7. – Тамбов: Юком, 2015 [Электронный ресурс]. – Режим доступа: Ucom.ru

6. Черкашин Ю.С. Электрические и магнитные потенциалы и их электрические и магнитные поля // Векторы развития науки: сборник статей. Часть 1. – Уфа: НИЦ «Аэтерна», 2015 [Электронный ресурс]. – Режим доступа: Aeterna-ufa.ru

7. Ландау Л.Д. Механика. Электродинамика / Л.Д. Ландау, Е.М. Лившиц. – М.: Наука, 1969.

8. Бессонов Л.А. Теоретические основы электротехники. – М.: Высшая школа, 1964.

9. Кузьмич Л.С. Эллиптические функции. Эллиптические интегралы. – М.: Книжный дом «Либроком», 2013.

10. Губарев Е.А. Электродинамика ориентируемой точки. – М.: Новый центр, 2013.

11. Нейман Л.Р. Теоретические основы электротехники / Л.Р. Нейман, К.С. Демирчян. – Т. 2. – Л.: Энергоиздат, 1981.

12. Черкашин Ю.С. Кольцевая молния // Science Time. – 2016. – № 3 (27).

13. Калантаров П.Л. Расчёт индуктивностей / П.Л. Калантаров, Л.А. Цейтлин. – Л.: Энергия, 1970.

14. Черкашин ЮС. Электродинамика 2020 постмаксвелловская: монография. – 4-е изд. – Чебоксары: ЦНС «Интерактив плюс», 2020. – 80 с. DOI 10.21661/а-734.

15. Фейнман Р. Фенймановские лекции по физике / Р. Фейнман, Р. Лейтон, М. Сэндс. – Том 7. – М.: Мир, 1966.

16. Зезин В.Г. Гидрогазодинамика / В.Г. Зезин. – Челябинск: Изд-во ЮУрГУ, 2010. – С. 4.

17. Черкашин Ю.С. Электродинамика 21 века, постмаксвелловская / ЮС. Черкашин. – LAP LAMBERT, 2022. – 76с. Для заметок

Научное издание

Черкашин Юрий Семёнович

ЭЛЕКТРОДИНАМИКА 2020 постмаксвелловская

Монография Пятое издание, исправленное и дополненное

Чебоксары, 2022 г.

Компьютерная верстка Л.С. Миронова Дизайн обложки Н.В. Фирсова

Подписано в печать 30.10.2022 г. Дата выхода издания в свет 09.11.2022 г. Формат 60×84/16. Бумага офсетная. Печать офсетная. Гарнитура Times. Усл. печ. л. 4,8825 Заказ К-1047. Тираж 500 экз.

Центр научного сотрудничества «Интерактив плюс» 428005, Чебоксары, Гражданская, 75 8 800 775 09 02 info@interactive-plus.ru www.interactive-plus.ru

Отпечатано в Студии печати «Максимум» 428005, Чебоксары, Гражданская, 75 +7 (8352) 655-047 info@maksimum21.ru www.maksimum21.ru