Центр научного сотрудничества "Интерактив плюс"
info@interactive-plus.ru
+7 (8352) 222-490
2130122532
Центр научного сотрудничества «Интерактив плюс»
RU
428000
Чувашская Республика
г.Чебоксары
ул.Гражданская, д.75
428000, Россия, Чувашская Республика, г. Чебоксары, улица Гражданская, дом 75
+7 (8352) 222-490
RU
428000
Чувашская Республика
г.Чебоксары
ул.Гражданская, д.75
56.125001
47.208966

Нейросеть салиенса: очередная дань моде или ключ от всех дверей?

Научная статья
DOI: 10.21661/r-554291
Open Access
Ежемесячный международный научный журнал «Интерактивная наука»
Creative commons logo
Опубликовано в:
Ежемесячный международный научный журнал «Интерактивная наука»
Авторы:
Дубатова И.В. 1 , Анцыборов А.В. 2
Рубрика:
Медицина
Рейтинг:
Статья просмотрена:
1707 раз
Размещено в:
eLibrary.ru
1 ФГБОУ ВО «Ростовский государственный медицинский университет» Минздрава России
2 ООО КМЗ «Психея»
Для цитирования:
Дубатова И. В. Нейросеть салиенса: очередная дань моде или ключ от всех дверей? / И. В. Дубатова, А. В. Анцыборов // Интерактивная наука. – 2021. – С. 25-37. – ISSN 2414-9411. – DOI 10.21661/r-554291.

  • Метаданные
  • Полный текст
  • Метрики
УДК 61

Аннотация

В настоящем обзоре представлен анализ данных литературы, посвященных исследованиям нейросети салиенса, динамике формирования нейросети в процессе онтогенеза головного мозга, дисрегуляции салиенса при нейродегенеративных и нейропсихических расстройствах. Рассмотрена роль дофаминергического дисбаланса в формировании аберрантного салиенса при шизофрении. Отдельное внимание уделено исследованиям значения мотивационного салиенса, и системы вознаграждения в патогенезе аддиктивных расстройств.

Список литературы

  1. 1. Koch C., Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry //Matters of intelligence. – Springer, Dordrecht, 1987. -p. 115–141
  2. 2. Marr D., Ullman S. Directional selectivity and its use in early visual processing // Proceedings of the Royal Society of London. Series B. Biological Sciences. – 1981. -Vol. 211. – №. 1183. -p. 151–180
  3. 3. Poggio T., Torre V., Koch C. Computational vision and regularization theory // Readings in computer vision. – 1987. -p. 638–643
  4. 4. Tibboel H., De Houwer J., Van Bockstaele B. Implicit measures of «wanting» and «liking» in humans //Neuroscience & Biobehavioral Reviews. – 2015. -Vol. 57. -p. 350–364
  5. 5. Crick F., Koch C. Towards a neurobiological theory of consciousness //Seminars in the Neurosciences. – 1990. -Vol. 2. – №. 263–275. -p. 203
  6. 6. Koch C. et al. The cognitive neurosciences. – MIT Press, 2004
  7. 7. Gazzaniga M. S. (ed.). Handbook of cognitive neuroscience. – Springer, 2014
  8. 8. Rees G., Kreiman G., Koch C. Neural correlates of consciousness in humans // Nature Reviews Neuroscience. – 2002. -Vol. 3. – №. 4. -p. 261–270
  9. 9. Corbetta M., Patel G., Shulman G. L. The reorienting system of the human brain: from environment to theory of mind //Neuron. – 2008. -Vol. 58. – №. 3. -p. 306–324
  10. 10. Мосолов С.Н. Некоторые актуальные теоретические проблемы диагностики, классификации, нейробиологии и терапии шизофрении: сравнение зарубежного и отечественного подходов / С.Н. Мосолов // Журнал неврологии и психиатрии им. СС Корсакова. – 2010. – Т. 110. – №. 6. – С. 4–11
  11. 11. Алфимов П.В. Дофаминергический дисбаланс, дисрегуляция салиенса и система вознаграждения при шизофрении (Обзор материалов XXI конгресса Европейской психиатрической ассоциации) / П.В. Алфимов // Сибирский вестник психиатрии и наркологии. – 2014. – №. 4. – С. 92–99
  12. 12. Merriam-Webster, Inc. Merriam-webster's medical dictionary. – Merriam-Webster, 1995
  13. 13. Waite M. (ed.). Paperback Oxford English dictionary. – Oxford University Press, 2012
  14. 14. Pessoa L. Understanding brain networks and brain organization //Physics of life reviews. – 2014. -Vol. 11. – №. 3. -p. 400–435
  15. 15. Pessoa L. A network model of the emotional brain //Trends in cognitive sciences. – 2017. -Vol. 21. – №. 5. -p. 357–371
  16. 16. Pessoa L., Thompson E., Noë A. Finding out about filling-in: A guide to perceptual completion for visual science and the philosophy of perception //Behavioral and brain sciences. – 1998. -Vol. 21. – №. 6. -p. 723–748
  17. 17. Thompson E., Noë A., Pessoa L. Perceptual completion: A case study in phenomenology and cognitive science. – 1999
  18. 18. Treisman A. Feature binding, attention and object perception //Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. – 1998. -Vol. 353. – №. 1373. -p. 1295–1306
  19. 19. Itti L., Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention //Vision research. – 2000. -Vol. 40. – №. 10–12. -p. 1489–1506
  20. 20. Itti L., Koch C. Computational modelling of visual attention //Nature reviews neuroscience. – 2001. -Vol. 2. – №. 3. -p. 194–203
  21. 21. Santangelo V. Forced to remember: when memory is biased by salient information //Behavioural brain research. – 2015. -Vol. 283. -p. 1–10
  22. 22. Dalton P., Santangelo V., Spence C. The role of working memory in auditory selective attention //Quarterly Journal of Experimental Psychology. – 2009. -Vol. 62. – №. 11. -p. 2126–2132
  23. 23. Dunsmoor J. E. et al. Emotional learning selectively and retroactively strengthens memories for related events //Nature. – 2015. -Vol. 520. – №. 7547. -p. 345–348
  24. 24. Pessoa L. The cognitive-emotional brain: From interactions to integration. – MIT press, 2013
  25. 25. Barrett L. F., Satpute A. B. Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain //Current opinion in neurobiology. – 2013. -Vol. 23. – №. 3. -p. 361–372
  26. 26. Lindquist K. A. et al. The brain basis of emotion: a meta-analytic review //The Behavioral and brain science. – 2012. -Vol. 35. – №. 3. -p. 121
  27. 27. Bressler S. L., Menon V. Large-scale brain networks in cognition: emerging methods and principles //Trends in cognitive sciences. – 2010. – Vol. 14. – №. 6. -p. 277–290
  28. 28. Kamiński M. et al. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance //Biological cybernetics. – 2001. -Vol. 85. – №. 2. -p. 145–157
  29. 29. Friston K. J. Functional and effective connectivity in neuroimaging: a synthesis //Human brain mapping. – 1994. -Vol. 2. – №. 1–2. -p. 56–78
  30. 30. Penny W. D. et al. (ed.). Statistical parametric mapping: the analysis of functional brain images. – Elsevier, 2011
  31. 31. Damoiseaux J. S. et al. Consistent resting-state networks across healthy subjects //Proceedings of the national academy of sciences. – 2006. -Vol. 103. – №. 37. -p. 13848–13853
  32. 32. Tang L. et al. Differential Functional Connectivity in Anterior and Posterior Hippocampus Supporting the Development of Memory Formation //Frontiers in Human Neuroscience. – 2020. -Vol. 14. -p. 204
  33. 33. Corbetta M., Shulman G. L. Control of goal-directed and stimulus-driven attention in the brain //Nature reviews neuroscience. – 2002. -Vol. 3. – №. 3. -p. 201–215
  34. 34. Fox M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks //Proceedings of the National Academy of Sciences. – 2005. -Vol. 102. – №. 27. -p. 9673–9678
  35. 35. Uddin L. Q. et al. The self and social cognition: the role of cortical midline structures and mirror neurons //Trends in cognitive sciences. – 2007. -Vol. 11. – №. 4. -p. 153–157
  36. 36. Menon V., Uddin L. Q. Saliency, switching, attention and control: a network model of insula function //Brain structure and function. – 2010. -Vol. 214. – №. 5–6. -p. 655–667
  37. 37. Kelly A. M. C. et al. Competition between functional brain networks mediates behavioral variability //Neuroimage. – 2008. -Vol. 39. – №. 1. -p. 527–537
  38. 38. Shehzad Z. et al. The resting brain: unconstrained yet reliable //Cerebral cortex. – 2009. -Vol. 19. – №. 10. -p. 2209–2229
  39. 39. Shehzad Z. et al. A multivariate distance-based analytic framework for connectome-wide association studies //Neuroimage. – 2014. -Vol. 93. -p. 74–94
  40. 40. Greicius M. D. et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis //Proceedings of the National Academy of Sciences. – 2003. -Vol. 100. – №. 1. -p. 253–258
  41. 41. Seeley W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control //Journal of Neuroscience. – 2007. -Vol. 27. – №. 9. -p. 2349–2356
  42. 42. Fox M. D. et al. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems //Proceedings of the National Academy of Sciences. – 2006. -Vol. 103. – №. 26. -p. 10046–10051
  43. 43. Shuvaev S. A. et al. Neural networks with motivation //Frontiers in Systems Neuroscience. – 2021. -Vol. 14. -p. 100
  44. 44. Seeley W. W. et al. Neurodegenerative diseases target large-scale human brain networks //Neuron. – 2009. -Vol. 62. – №. 1. -p. 42–52
  45. 45. Guo C. C. et al. One-year test-retest reliability of intrinsic connectivity network fMRI in older adults //Neuroimage. – 2012. -Vol. 61. – №. 4. -p. 1471–1483
  46. 46. Uddin L. Q. Salience processing and insular cortical function and dysfunction //Nature reviews neuroscience. – 2015. -Vol. 16. – №. 1. -p. 55–61
  47. 47. Augustine J. R. Circuitry and functional aspects of the insular lobe in primates including humans //Brain research reviews. – 1996. -Vol. 22. – №. 3. -p. 229–244
  48. 48. Tsai P. J. et al. Converging structural and functional evidence for a rat salience network //Biological Psychiatry. – 2020. -Vol. 88. – №. 11. -p. 867–878
  49. 49. McDermott T. J. et al. Visual cortical regions show sufficient test-retest reliability while salience regions are unreliable during emotional face processing //NeuroImage. – 2020. -Vol. 220. -p. 117077
  50. 50. Hegarty A. K. et al. Salience network functional connectivity is spatially heterogeneous across sensorimotor cortex in healthy humans //NeuroImage. – 2020. -Vol. 221.-p.117177
  51. 51. Hoffmann M. Prefrontal Network for Executive Control of Cognition and Comportment Including the Executive Control, Salience (Ventral Attention) and Semantic Appraisal (SAN) Networks //Clinical Mentation Evaluation. – Springer, Cham, 2020. -p. 61–77
  52. 52. Das A., Menon V. Spatiotemporal Integrity and Spontaneous Nonlinear Dynamic Properties of the Salience Network Revealed by Human Intracranial Electrophysiology: A Multicohort Replication //Cerebral Cortex. – 2020. -Vol. 30. – №. 10. -p. 5309–5321
  53. 53. Han J. et al. Eye-Opening Alters the Interaction Between the Salience Network and the Default-Mode Network //Neuroscience Bulletin. – 2020. -Vol. 36. – №. 12. -p. 1547–1551
  54. 54. Suo X. et al. Anatomical and functional coupling between the dorsal and ventral attention networks //NeuroImage. – 2021. -Vol. 232. -p. 117868
  55. 55. Saviola F. et al. First-episode psychosis: Structural covariance deficits in salience network correlate with symptoms severity //Journal of Psychiatric Research. – 2021. -Vol. 136. -p. 409–420
  56. 56. Shu T. et al. Reduced structural covariance connectivity of default mode network and salience network in MRI-normal focal epilepsy //NeuroReport. – 2020. -Vol. 31. – №. 18. -p. 1289–1295
  57. 57. Ma J. et al. Decreased functional connectivity within the salience network after two-week morning bright light exposure in individuals with sleep disturbances: a preliminary randomized controlled trial //Sleep Medicine. – 2020. -Vol. 74. -p. 66–72
  58. 58. Bolton T. A. W. et al. Triple network model dynamically revisited: lower salience network state switching in pre-psychosis //Frontiers in physiology. – 2020. -Vol. 11. -p. 66
  59. 59. Nanda S. et al. Combined Parietal-Insular-Striatal Cortex Stroke with New-Onset Hallucinations: Supporting the Salience Network Model of Schizophrenia //Psychiatry journal. – 2020. -Vol. 2020
  60. 60. Wang Y. et al. Frequency-dependent circuits anchored in the dorsal and ventral left anterior insula //Scientific reports. – 2020. -Vol. 10. – №. 1. -p. 1–13
  61. 61. Fair D. A. et al. The maturing architecture of the brain's default network //Proceedings of the National Academy of Sciences. – 2008. -Vol. 105. – №. 10. -p. 4028–4032
  62. 62. Dosenbach N. U. F. et al. A dual-networks architecture of top-down control //Trends in cognitive sciences. – 2008. -Vol. 12. – №. 3. -p. 99–105
  63. 63. Palaniyappan L., White T. P., Liddle P. F. The concept of salience network dysfunction in schizophrenia: from neuroimaging observations to therapeutic opportunities //Current topics in medicinal chemistry. – 2012. -Vol. 12. – №. 21. -p. 2324–2338
  64. 64. Manoliu A. et al. Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder //Frontiers in human neuroscience. – 2014. -Vol. 7. -p. 930
  65. 65. Toyomaki A., Murohashi H. «Salience network» dysfunction hypothesis in autism spectrum disorders //Japanese Psychological Research. – 2013. -Vol. 55. – №. 2. -p. 175–185
  66. 66. Thomason M. E. et al. Cross-hemispheric functional connectivity in the human fetal brain //Science translational medicine. – 2013. -Vol. 5. – №. 173. -p. 173ra24
  67. 67. Fransson P. et al. The functional architecture of the infant brain as revealed by resting-state fMRI //Cerebral cortex. – 2011. -Vol. 21. – №. 1. -p. 145–154
  68. 68. Gao W. et al. Development of human brain cortical network architecture during infancy //Brain Structure and Function. – 2015. -Vol. 220. – №. 2. -p. 1173–1186
  69. 69. Knickmeyer R. C. et al. A structural MRI study of human brain development from birth to 2 years //Journal of neuroscience. – 2008. -Vol. 28. – №. 47. -p. 12176–12182
  70. 70. Dubois J. et al. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants //Neuroscience. – 2014. -Vol. 276. -p. 48–71
  71. 71. Tamm L., Menon V., Reiss A. L. Maturation of brain function associated with response inhibition //Journal of the American Academy of Child & Adolescent Psychiatry. – 2002. -Vol. 41. – №. 10. -p. 1231–1238
  72. 72. Phan K. L. et al. Neural correlates of individual ratings of emotional salience: a trial-related fMRI study //Neuroimage. – 2004. -Vol. 21. – №. 2. -p. 768–780
  73. 73. Wilk H. A., Ezekiel F., Morton J. B. Brain regions associated with moment-to-moment adjustments in control and stable task-set maintenance //Neuroimage. – 2012. -Vol. 59. – №. 2. -p. 1960–1967
  74. 74. Marstaller L. et al. Aging and large-scale functional networks: white matter integrity, gray matter volume, and functional connectivity in the resting state //Neuroscience. – 2015. -Vol. 290. -p. 369–378
  75. 75. Archer J. A. et al. A comprehensive analysis of connectivity and aging over the adult life span //Brain connectivity. – 2016. -Vol. 6. – №. 2. -p. 169–185
  76. 76. Tsvetanov K. A. et al. Extrinsic and intrinsic brain network connectivity maintains cognition across the lifespan despite accelerated decay of regional brain activation //Journal of Neuroscience. – 2016. -Vol. 36. – №. 11. -p. 3115–3126
  77. 77. Wei M. et al. Abnormal dynamic community structure of the salience network in depression //Journal of Magnetic Resonance Imaging. – 2017. -Vol. 45. – №. 4. -p. 1135–1143
  78. 78. Uddin L. Q. et al. Salience network-based classification and prediction of symptom severity in children with autism //JAMA psychiatry. – 2013. -Vol. 70. – №. 8. -p. 869–879
  79. 79. Marshall E. et al. Coactivation pattern analysis reveals altered salience network dynamics in children with autism spectrum disorder //Network Neuroscience. – 2020. -Vol. 4. – №. 4. -p. 1219–1234
  80. 80. Uddin L. Q. Salience network of the human brain. – Academic press, 2016
  81. 81. Zielinski B. A. et al. scMRI reveals large-scale brain network abnormalities in autism //PloS one. – 2012. -Vol. 7. – №. 11. -p. e49172
  82. 82. Chen H. et al. Shared atypical default mode and salience network functional connectivity between autism and schizophrenia //Autism Research. – 2017. -Vol. 10. – №. 11. -p. 1776–1786
  83. 83. Margolis A. E. et al. Salience network connectivity and social processing in children with nonverbal learning disability or autism spectrum disorder //Neuropsychology. – 2019. -Vol. 33. – №. 1. -p. 135
  84. 84. Uddin L. Q., Menon V. The anterior insula in autism: under-connected and under-examined //Neuroscience & Biobehavioral Reviews. – 2009. -Vol. 33. – №. 8. – p. 1198–1203.
  85. 85. Abbott A. E. et al. Patterns of atypical functional connectivity and behavioral links in autism differ between default, salience, and executive networks //Cerebral cortex. – 2016. -Vol. 26. – №. 10. -p. 4034–4045
  86. 86. Odriozola P. et al. Insula response and connectivity during social and non-social attention in children with autism //Social cognitive and affective neuroscience. – 2016. -Vol. 11. – №. 3. -p. 433–444
  87. 87. Cummings K. K. et al. Sex Differences in Salience Network Connectivity and its Relationship to Sensory Over-Responsivity in Youth with Autism Spectrum Disorder //Autism Research. – 2020. -Vol. 13. – №. 9. -p. 1489–1500
  88. 88. Luo Q. et al. Effective connectivity of the right anterior insula in schizophrenia: The salience network and task-negative to task-positive transition //NeuroImage: Clinical. – 2020. -Vol. 28. -p. 102377
  89. 89. Navalpotro-Gomez I. et al. Disrupted salience network dynamics in Parkinson's disease patients with impulse control disorders //Parkinsonism & related disorders. – 2020. -Vol. 70. -p. 74–81
  90. 90. Pasquini L. et al. Salience network atrophy links neuron type-specific pathobiology to loss of empathy in frontotemporal dementia //Cerebral Cortex. – 2020. -Vol. 30. – №. 10. -p. 5387–5399
  91. 91. Rankin K. P. Brain Networks Supporting Social Cognition in Dementia //Current Behavioral Neuroscience Reports. – 2020. -p. 1–9
  92. 92. Zhou J. H., Ng K. K., Liu S. Brain Network Functional Connectivity in Alzheimer’s Disease and Frontotemporal Dementia //fMRI. – Springer, Cham, 2020. -p. 385–415
  93. 93. Rogalski E. J. et al. Super Aging: A model for studying mechanisms of resilience and resistance: Reserve and resilience: Opportunities and mechanisms for dementia prevention //Alzheimer's & Dementia. – 2020. -Vol. 16. -p. e037932.
  94. 94. Moguilner S. et al. Dynamic brain fluctuations outperform connectivity measures and mirror pathophysiological profiles across dementia subtypes: a multicenter study //Neuroimage. – 2021. -Vol. 225. -p. 117522
  95. 95. Xue C. et al. Structural and Functional Disruption of Salience Network in Distinguishing Subjective Cognitive Decline and Amnestic Mild Cognitive Impairment //ACS chemical neuroscience. – 2021. -Vol. 12. – №. 8. -p. 1384–1394
  96. 96. Liu Y. et al. Association between cortical thickness and distinct vascular cognitive impairment and dementia in patients with white matter lesions //Experimental Physiology. – 2021
  97. 97. Frau-Pascual A. et al. Conductance-based structural brain connectivity in aging and dementia //Brain Connectivity. – 2021
  98. 98. Uddin L. Q. Cognitive and behavioral flexibility: neural mechanisms and clinical considerations //Nature Reviews Neuroscience. – 2021. -p. 1–13
  99. 99. Schumacher J. et al. Dementia with Lewy bodies: association of Alzheimer pathology with functional connectivity networks //Brain. – 2021
  100. 100. De Micco R. et al. Connectivity Correlates of Anxiety Symptoms in Drug-Naive Parkinson's Disease Patients //Movement Disorders. – 2021. -Vol. 36. – №. 1. -p. 96–105
  101. 101. Chavanne A. V., Robinson O. J. The overlapping neurobiology of induced and pathological anxiety: a meta-analysis of functional neural activation //American Journal of Psychiatry. – 2021. -Vol. 178. – №. 2. -p. 156–164
  102. 102. Ho T. C. et al. Default mode and salience network alterations in suicidal and non-suicidal self-injurious thoughts and behaviors in adolescents with depression //Translational psychiatry. – 2021. -Vol. 11. – №. 1. -p. 1–14
  103. 103. Luo L. et al. Abnormal large-scale resting-state functional networks in drug-free major depressive disorder //Brain imaging and behavior. – 2021. -Vol. 15. – №. 1. -p. 96–106
  104. 104. Rey G., Piguet C., Vuilleumier P. Functional Resting-State Network Disturbances in Bipolar Disorder //Brain network dysfunction in neuropsychiatric illness: methods application and implications. Springer. – 2021. -p. 273–95
  105. 105. Malejko K. et al. Differential neural processing of unpleasant sensory stimulation in patients with major depression //European archives of psychiatry and clinical neuroscience. – 2021. -Vol. 271. – №. 3. -p. 557–565
  106. 106. Lee S. K. et al. The relationship between ambivalence, alexithymia, and salience network dysfunction in schizophrenia //Psychiatry Research: Neuroimaging. – 2021. -Vol. 310. -p. 111271
  107. 107. Del Fabro L. et al. Functional Brain Network Dysfunctions in Subjects at High-risk for Psychosis: A Meta-analysis of Resting-state Functional Connectivity //Neuroscience & Biobehavioral Reviews. – 2021
  108. 108. Sheffield J. M. et al. Insula sub-regions across the psychosis spectrum: morphology and clinical correlates //Translational psychiatry. – 2021. -Vol. 11. – №. 1. -p. 1–13
  109. 109. Tseng H. H. et al. Absence of negative associations of insular and medial frontal gray matter volume with dissociative symptoms in schizophrenia //Journal of Psychiatric Research. – 2021. -Vol. 138. -p. 485–491
  110. 110. Palaniyappan L. et al. Cortical thickness and oscillatory phase resetting: a proposed mechanism of salience network dysfunction in schizophrenia //Psychiatrike. – 2012. -Vol. 23. – №. 2. -p. 117–129
  111. 111. Orliac F. et al. Links among resting-state default-mode network, salience network, and symptomatology in schizophrenia //Schizophrenia research. – 2013. -Vol. 148. – №. 1–3. -p. 74–80
  112. 112. Han S. et al. Dysconnectivity between the raphe nucleus and subcortical dopamine-related regions contributes altered salience network in schizophrenia //Schizophrenia research. – 2020. -Vol. 216. -p. 382–388
  113. 113. Tikàsz A. et al. Violent behavior is associated with emotion salience network dysconnectivity in schizophrenia //Frontiers in psychiatry. – 2020. -Vol. 11. -p. 143
  114. 114. McTeague L. M. et al. Identification of common neural circuit disruptions in emotional processing across psychiatric disorders //American Journal of Psychiatry. – 2020. -Vol. 177. – №. 5. -p. 411–421
  115. 115. Limongi R. et al. Glutamate and disconnection in the salience network: neurochemical, effective connectivity, and computational evidence in schizophrenia //Biological psychiatry. – 2020. -Vol. 88. – №. 3. -p. 273–281
  116. 116. Rössler J. et al. Dopamine-Induced Dysconnectivity Between Salience Network and Auditory Cortex in Subjects with Psychotic-like Experiences: A Randomized Double-Blind Placebo-Controlled Study //Schizophrenia bulletin. – 2020. -Vol. 46. – №. 3. -p. 732–740
  117. 117. Comparelli A. et al. Relationship between aberrant salience and positive emotion misrecognition in acute relapse of schizophrenia //Asian journal of psychiatry. – 2020. -Vol. 49. -p. 101975
  118. 118. Liang S. et al. Aberrant triple-network connectivity patterns discriminate biotypes of first-episode medication-naive schizophrenia in two large independent cohorts //Neuropsychopharmacology. – 2021. -p. 1–8
  119. 119. Zhang X. et al. Disrupted structural covariance network in first episode schizophrenia patients: Evidence from a large sample MRI-based morphometric study //Schizophrenia Research. – 2020. -Vol. 224. -p. 24–32
  120. 120. McCutcheon R. A. et al. Mesolimbic dopamine function is related to salience network connectivity: an integrative positron emission tomography and magnetic resonance study //Biological psychiatry. – 2019. -Vol. 85. – №. 5. -p. 368–378
  121. 121. Wang Y. et al. Resting-state functional connectivity changes within the default mode network and the salience network after antipsychotic treatment in early-phase schizophrenia //Neuropsychiatric disease and treatment. – 2017. -Vol. 13. -p. 397
  122. 122. Zhang R., Volkow N. D. Brain default-mode network dysfunction in addiction //Neuroimage. – 2019. -Vol. 200. -p. 313–331
  123. 123. Kim B. H. et al. Disrupted salience processing involved in motivational deficits for real-life activities in patients with schizophrenia //Schizophrenia research. – 2018. -Vol. 197. -p. 407–413
  124. 124. Birur B. et al. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder-a systematic review of the magnetic resonance neuroimaging literature //NPJ schizophrenia. – 2017. -Vol. 3. – №. 1. -p. 1–15
  125. 125. Schifani C. et al. Using molecular imaging to understand early schizophrenia-related psychosis neurochemistry: a review of human studies //International Review of Psychiatry. – 2017. -Vol. 29. – №. 6. -p. 555–566
  126. 126. Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia //American Journal of Psychiatry. – 2003. -Vol. 160. – №. 1. -p. 13–23
  127. 127. Howes O. D., Kapur S. The dopamine hypothesis of schizophrenia: version III-the final common pathway //Schizophrenia bulletin. – 2009. -Vol. 35. – №. 3. -p. 549–562
  128. 128. Kapur S., Mizrahi R., Li M. From dopamine to salience to psychosis-linking biology, pharmacology and phenomenology of psychosis //Schizophrenia research. – 2005. -Vol. 79. – №. 1. -p. 59–68
  129. 129. Ohta M. et al. Structural equation modeling approach between salience network dysfunction, depressed mood, and subjective quality of life in schizophrenia: an ICA resting-state fMRI study //Neuropsychiatric disease and treatment. – 2018. – Vol. 14. -p. 1585
  130. 130. Sui J. et al. Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion //Nature communications. – 2018. -Vol. 9. – №. 1. -p. 1–14
  131. 131. Miyata J. Toward integrated understanding of salience in psychosis //Neurobiology of Disease. – 2019. -Vol. 131. -p. 104414
  132. 132. Puledda F. et al. Disrupted connectivity within visual, attentional and salience networks in the visual snow syndrome //Human brain mapping. – 2021. -Vol. 42. – №. 7. -p. 2032–2044
  133. 133. Bolton M. J. et al. Initial evidence for increased weather salience in autism spectrum conditions //Weather, Climate, and Society. – 2020. -Vol. 12. – №. 2. -p. 293–307
  134. 134. Puledda F. et al. Insular and occipital changes in visual snow syndrome: a BOLD fMRI and MRS study //Annals of clinical and translational neurology. – 2020. -Vol. 7. – №. 3. -p. 296–306
  135. 135. Lisi G. et al. Aberrant salience in adolescents is related to indicators of psychopathology that are relevant in the prodromal phases of psychosis //Early Intervention in Psychiatry. – 2020
  136. 136. Uno Y., Coyle J. T. Glutamate hypothesis in schizophrenia //Psychiatry and clinical neurosciences. – 2019. -Vol. 73. – №. 5. -p. 204–215
  137. 137. Lin C. H., Lane H. Y. Early identification and intervention of schizophrenia: insight from hypotheses of glutamate dysfunction and oxidative stress //Frontiers in psychiatry. – 2019. -Vol. 10. -p. 93
  138. 138. Дубатова И.В. Влияние «шоковых» методов терапии на процессы свободнорадикального окисления и антиоксидантной защиты у больных шизофренией / И.В. Дубатова // Материалы I научной сессии Ростовского государственного медицинского университета. – 1996. – C. 39
  139. 139. Дубатова И.В. Взаимосвязь клинических форм эндогенных психозов с состоянием некоторых систем гомеостаза / И.В. Дубатова // Материалы XIII съезда психиатров РФ 10–13 октября 2000. – С. 357–358
  140. 140. Вилков Г.А. Модель нейросенсибилизации, подтверждающая зависимость психического здоровья от состояния антиоксидантных систем / Г.А. Вилков, И.В. Дубатова З.А. Гончарова // Современные подходы к диагностике и лечению нервных и психических заболеваний: материалы юбилейной научной конференции с международным участием, посвященной 140-летию кафедры нервных и душевных болезней Военно-медицинской академии. – СПб, 2000. – C. 63
  141. 141. Upthegrove R., Khandaker G. M. Cytokines, oxidative stress and cellular markers of inflammation in schizophrenia //Neuroinflammation and Schizophrenia. – 2019. -p. 49–66
  142. 142. Bai Z. L. et al. Serum oxidative stress marker levels in unmedicated and medicated patients with schizophrenia //Journal of Molecular Neuroscience. – 2018. -Vol. 66. – №. 3. -p. 428–436
  143. 143. Nakazawa K., Sapkota K. The origin of NMDA receptor hypofunction in schizophrenia //Pharmacology & therapeutics. – 2020. -Vol. 205. – p. 107426
  144. 144. Phensy A. et al. Antioxidant treatment in male mice prevents mitochondrial and synaptic changes in an NMDA receptor dysfunction model of schizophrenia // Eneuro. – 2017. -Vol. 4. – №. 4
  145. 145. Hardingham G. E., Do K. Q. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis //Nature Reviews Neuroscience. – 2016. - Vol. 17. – №. 2. -p. 125.
  146. 146. Перехов А.Я. Методологические основы диагностики прогредиентных психозов у потребителей гашиша / А.Я. Перехов // Материалы международной конференции психиатров 16–18 октября 1998г. – М.: РЦ «Фармединфо», 1998. – С. 338–339.
  147. 147. Henquet C. et al. Gene-environment interplay between cannabis and psychosis //Schizophrenia bulletin. – 2008. -Vol. 34. – №. 6. -p. 1111–1121
  148. 148. Müller-Vahl K. R., Emrich H. M. Cannabis and schizophrenia: towards a cannabinoid hypothesis of schizophrenia //Expert Review of Neurotherapeutics. – 2008. -Vol. 8. – №. 7. -p. 1037–1048
  149. 149. Müller H. et al. The synthetic cannabinoid Spice as a trigger for an acute exacerbation of cannabis induced recurrent psychotic episodes //Schizophrenia research. – 2010. -Vol. 118. – №. 1–3. -p. 309–310
  150. 150. Дубатова И.В. Клиническая значимость и особенности психических расстройств у потребителем» дизайнерских наркотиков» / Дубатова И.В. [и др.] // Уральский медицинский журнал. – 2017. – №. 5. – С. 104–108
  151. 151. Дубатова И.В. и др. Анализ клинических проявлений и особенности терапии психотических расстройств у потребителей дизайнерских наркотиков / Дубатова И.В. и др. // Главный врач Юга России. – 2018. – №. 59 (1), 52 – 56
  152. 152. Papanti D. et al. «Spiceophrenia»: a systematic overview of «Spice» -related psychopathological issues and a case report //Human Psychopharmacology: Clinical and Experimental. – 2013. -Vol. 28. – №. 4. -p. 379–389
  153. 153. Der Veer N. V., Friday J. Persistent psychosis following the use of Spice //Schizophrenia research. – 2011. -Vol. 130. – №. 1–3. – p. 285–286
  154. 154. Galandra C. et al. Salience network structural integrity predicts executive impairment in alcohol use disorders //Scientific reports. – 2018. -Vol. 8. – №. 1. -p. 1–13
  155. 155. Ekhtiari H., Zare-Bidoky M., Verdejo-Garcia A. Neurocognitive Disorders in Substance Use Disorders //Textbook of Addiction Treatment. – Springer, Cham, 2021. -p. 1159–1176
  156. 156. Wilson R. et al. Cannabidiol attenuates insular dysfunction during motivational salience processing in subjects at clinical high risk for psychosis //Translational psychiatry. – 2019. -Vol. 9. – №. 1. -p. 1–10
  157. 157. Seeley W. W. The salience network: a neural system for perceiving and responding to homeostatic demands //Journal of Neuroscience. – 2019. -Vol. 39. – №. 50. -p. 9878–9882
  158. 158. Janes A. C. et al. Craving and cue reactivity in nicotine-dependent tobacco smokers is associated with different insula networks //Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. – 2020. -Vol. 5. – №. 1. -p. 76–83
  159. 159. Wang K. S. et al. Temporal dynamics of large-scale networks predict neural cue reactivity and cue-induced craving //Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. – 2020. -Vol. 5. – №. 11. -p. 1011–1018
  160. 160. Volkow N. D., Michaelides M., Baler R. The neuroscience of drug reward and addiction //Physiological reviews. – 2019. -Vol. 99. – №. 4. -p. 2115–2140
  161. 161. Zilverstand A. et al. Neuroimaging impaired response inhibition and salience attribution in human drug addiction: a systematic review //Neuron. – 2018. -Vol. 98. – №. 5. -p. 886–903
  162. 162. Sevinc G., Gurvit H., Spreng R. N. Salience network engagement with the detection of morally laden information //Social cognitive and affective neuroscience. – 2017. -Vol. 12. – №. 7. -p. 1118–1127
  163. 163. Goschke T. Dysfunctions of decision-making and cognitive control as transdiagnostic mechanisms of mental disorders: advances, gaps, and needs in current research //International journal of methods in psychiatric research. – 2014. -Vol. 23. – №. S1. -p. 41–57
  164. 164. Grodin E. N. et al. Structural deficits in salience network regions are associated with increased impulsivity and compulsivity in alcohol dependence //Drug and alcohol dependence. – 2017. -Vol. 179. -p. 100–108
  165. 165. Дубатова И.В. Роль импульсивности и расстройств импульсного контроля в формировании аддиктивных расстройств / И.В. Дубатова, А.В. Анцыборов // Интерактивная наука. – 2019. – №. 6. – С. 68–84.

Комментарии(0)

При добавлении комментария укажите:
  • степень актуальности публикуемого материала;
  • общую оценку (оригинальность и актуальность темы, полнота, глубина, всесторонность раскрытия темы, логичность, связность, доказательность, структурная упорядоченность, характер и достоверность примеров, иллюстративного материала, убедительность выводов);
  • недостатки, недочеты;
  • вопросы и пожелания Автору.