Центр научного сотрудничества "Интерактив плюс"
info@interactive-plus.ru
+7 (8352) 222-490
2130122532
Центр научного сотрудничества «Интерактив плюс»
RU
428000
Чувашская Республика
г.Чебоксары
ул.Гражданская, д.75
428000, Россия, Чувашская Республика, г. Чебоксары, улица Гражданская, дом 75
+7 (8352) 222-490
RU
428000
Чувашская Республика
г.Чебоксары
ул.Гражданская, д.75
56.125001
47.208966

Electrical properties of graphenes for application in electrochemical charge storage devices

Proceeding
DOI: 10.21661/r-508508
Open Access
International Scientific and Practical Conference «Relevant lines of scientific research: theory and practice»
Creative commons logo
Published in:
International Scientific and Practical Conference «Relevant lines of scientific research: theory and practice»
Authors:
Levin K.L. 1 , Jelamo R.V. 2 , Pshchelko N.S. 1 , Khanin S.D. 1
Work direction:
Естественные науки (физические и химические науки)
Rating:
Article accesses:
1538
Published in:
eLibrary.ru
1 FSBMEI of HE “USSR Marshal S.M. Budenny Military Academy of Communi-cation
2 Institute of Technological and Exact Sciences of the Federal University of Triangulo Mineiro (UFTM)
For citation:
Levin K. L., Jelamo R. V., Pshchelko N. S., & Khanin S. D. (2019). Electrical properties of graphenes for application in electrochemical charge storage devices. Relevant lines of scientific research: theory and practice, 22-24. Cheboksary: SCC "Interactive plus", LLC. https://doi.org/10.21661/r-508508

  • Metadata
  • Full text
  • Metrics

Abstract

Graphenes in the form of flexible thin films treated with different types of plasma were investigated by Mott-Schottky analysis. The possibility of variation of electrical conductivity in graphene prepared by plasma treatment was shown. Obtained materials are promising for electric energy storage devices.

References

  1. 1. Bolotin K.I. Ultrahigh electron mobility in suspended graphene / K.I. Bolotin, K.J. Sikes, Z. Jiang [et. al.] // Solid State Communications. – 2008. – №146 (9–10). – P. 351–355.
  2. 2. E. Stolyarova, D. Stolyarov, K. Bolotin [et. al.] // Nano Lett. – 2008. – №9. – P. 332.
  3. 3. B. Jouault, B. Jabakhanji, N. Camara [et. al.] // Physical Review B 82, 085438, 2010.
  4. 4. C. Lou, Sh. Wang, T. Liang [et. al.] // Materials. – 2017. – №10. – P. 1068.
  5. 5. Chen X. Decoupling the charge collecting and screening effects in piezotronics-regulated photoelectrochemical systems by using graphene as the charge collector / X. Chen, L. German, J. Bong [et. al.] // Nano Energy. – 2018. – №48. – P. 377–382.
  6. 6. R.K. Singh Raman, A. Tiwari // JOM. – 2014. – Vol. 66. – №4.
  7. 7. G. de Souza Augusto, J. Scarmínio, P.R.C. Silva [et. al.] // Electrochimica Acta. – 2018. – №285. – P. 241–253.
  8. 8. Chen K. Graphene-based materials for flexible energy storage devices / K. Chen, Q. Wang, Zh. Niu [et. al.] // Journal of Energy Chemistry. – 2018. – №27 (1). – P. 12–24.
  9. 9. Reddy P.M. Improved organic-inorganic/graphene hybrid composite as encapsulant for white LEDs: Role of graphene, titanium (IV) isopropoxide and diphenylsilanediol / P.M. Reddy, C.-J. Chang, C.-F. Lai [et. al.] // Composites Science and Technology. – 2018. – №165. – P. 95–105.
  10. 10. Justino C.I.L. Graphene based sensors and biosensors / C.I.L. Justino, A.R. Gomes, A.C. Freitas [et. al.] // TrAC Trends in Analytical Chemistry. – 2017. – №91. – P. 53–66.
  11. 11. Khare R.T. Enhanced field emission of plasma treated multilayer graphene / R.T. Khare, R.V. Gelamo, M.A. More [et. al.] // Appl. Phys. Lett. – 2015. – №107. – 123503.
  12. 12. Levine K.L. Mott-Schottky analysis of Aluminum oxide formed in the presence of different mediators on the surface of Aluminium alloy 2024-T3 / K.L. Levine, D.E. Tallman, G.P. Bierwagen // Journal of Materials Processing Technology. – 2008. – №199. – P. 321–326.
  13. 13. The Properties of Diamond / J.E. Field (ed.). – London: Academic, 1979.
  14. 14. Prelas M.A. Handbook of Industrial Diamonds and Diamond Films / M.A. Prelas, G. Popovici, L.K. Bigelow. – New York: Dekker, 1998.
  15. 15. Van der Pauw L.J. A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape // Philips Technical Review. – 1958. – №20. – P. 220–224.

Comments(0)

When adding a comment stipulate:
  • the relevance of the published material;
  • general estimation (originality and relevance of the topic, completeness, depth, comprehensiveness of topic disclosure, consistency, coherence, evidence, structural ordering, nature and the accuracy of the examples, illustrative material, the credibility of the conclusions;
  • disadvantages, shortcomings;
  • questions and wishes to author.