Центр научного сотрудничества "Интерактив плюс"
info@interactive-plus.ru
+7 (8352) 222-490
2130122532
Центр научного сотрудничества «Интерактив плюс»
RU
428000
Чувашская Республика
г.Чебоксары
ул.Гражданская, д.75
428000, Россия, Чувашская Республика, г. Чебоксары, улица Гражданская, дом 75
+7 (8352) 222-490
RU
428000
Чувашская Республика
г.Чебоксары
ул.Гражданская, д.75
56.125001
47.208966

Prospects for obtaining perovskite-like compounds with the Dion-Jacobson structure and the influence of precursors on their phase formation, structure, and properties

Proceeding
DOI: 10.21661/r-556864
Open Access
International Research-to-practice conference «Education and science in the modern context»
Creative commons logo
Published in:
International Research-to-practice conference «Education and science in the modern context»
Authors:
Khuan C. 1 , Mitrofanova A. V. 1
Work direction:
Естественные науки (физические и химические науки)
Rating:
Article accesses:
534
Published in:
eLibrary.ru
1 FSAEI of HE «Peoples’ Friendship University of Russia»
For citation:
Khuan C., & Mitrofanova A. V. (2022). Prospects for obtaining perovskite-like compounds with the Dion-Jacobson structure and the influence of precursors on their phase formation, structure, and properties. Education and science in the modern context, 13-19. Чебоксары: SCC "Interactive plus", LLC. https://doi.org/10.21661/r-556864

  • Metadata
  • Full text
  • Metrics

Abstract

Layered perovskites, including the Dion-Jacobson phases, are of interest to researchers due to a wide range of revealed properties. Among them there are compounds with high photocatalytic activity, ionic conductors, ferroelectrics, piezoelectrics, ferroelectrics and luminophores, as well as materials with unique magnetic properties. However, the properties of these materials largely depend on the method of synthesis and the precursors used, so the study of the possibility of obtaining layered perovskite-like compounds of various compositions remains relevant. The purpose of this work is to study various literature sources, to identify the possibility and methods for obtaining pure phases with the Dion-Jacobson structure, to consider the areas of application of these compounds, and to establish prospects for further research.

References

  1. 1. Кулиш Л.Д. Исследование топохимических процессов в слоистых перовскитоподобных титанатах. // Диссертация на соискание ученой степени кандидата химических наук. – СПб., 2017. – 120 с.
  2. 2. Aurivillius, B. Mixed Bismuth Oxides with Layer Lattices I. The Structure Type of CaNb2Bi2O9. // Arkiv kemi. 1949. V. 1. PP. 463–480.
  3. 3. Benedek, N.A. Origin of Ferroelectricity in a Family of Polar Oxides: The Dion-Jacobson Phases. // Inorganic Chemistry. 2014. V. 53. №7. PP. 3769–77.
  4. 4. Cahill, D.G., Melville, A., Schlom, D.G., & Zurbuchen, M.A. «Low Thermal Conductivity of CsBiNb2O7 Epitaxial Layers. // Applied Physics Letters. 2010. V. 96. №12. P. 121903.
  5. 5. Chen, C., Ning, H., Lepadatu, S., Cain, M., Yan, H., & Reece, M.J. Ferroelectricity in Dion-Jacobson ABiNb2O7 (A = Rb, Cs) Compounds. // Journal of Materials Chemistry. 2015. C. 3. №1. PP. 19–22.
  6. 6. Cheng, Y., Wu, J., Xu, C., Li, T. Research on Preparation and Photocatalytic Properties of HLaNb2O7/(Pt, TiO2). // Chemical Production and Technology. 2004. V. 11. №2. PP. 10–13.
  7. 7. Dion, M., Ganne, M., Tournoux, M. Nouvelles familles de phases MIMII2Nb3O10 a feuillets «perovskites». // Materials Research Bulletin. 1981. V. 16. №11. PP. 1429–1435.
  8. 8. Goff, R.J., Keeble, D., Thomas, P.A., Ritter, C., Morrison, F.D., & Lightfoot, P. Leakage and Proton Conductivity in the Predicted Ferroelectric CsBiNb2O7. // Chemistry of Materials. 2009. V. 21. №7. PP. 1296–1302.
  9. 9. Gopalakrishnan, J., Bhat, V., Raveau, B. AILaNb2O7: A new series of layered perovskites exhibiting ion exchange and intercalation behaviour. // Materials Research Bulletin. 1987. V. 22. PP. 413–417.
  10. 10. Huang, Y., Weim Y., Fan, L., Huang, M., Lin, J., & Wu, J. Photocatalytic Activities of HLaNb2O7 Prepared by Polymerized Complex Method. // International Journal of Hydrogen Energy. 2009. V. 34. №13. PP. 5318–25.
  11. 11. Huang, Y.F., Xie, Y.M., Fan, L.Q., Li, Y.B., Wei, Y.L., Lin, J.M., Wu, P. Synthesis and photochemical properties of La-doped HCa2Nb3O10. // International Journal of Hydrogen Energy. 2008. V. 33. №22. PP. 6432–6438.
  12. 12. Jacobson, A.J., Johnson J.W., Lewandowski J.T. Interlayer chemistry between thick transition-metal oxide layers: synthesis and intercalation reactions of K[Ca2Nan-3NbnO3n+1]. // Inorganic chemistry. 1985. V. 24. №23. PP. 3727–3729.
  13. 13. Jacobson, A.J., Lewandowski, J.T., & Johnson. J.W. Ion exchange of the layered perovskite KCa2Nb3O10 by protons. // Journal of the Less Common Metals. 1986. V. 116. №1. PP. 137–146.
  14. 14. Kato, H., Kobayashi, H., Kudo, A. Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M: Ta and Nb) with the perovskite structure. // The Journal of Physical Chemistry B. 2002. V. 106. №48. PP. 12441–12447.
  15. 15. Knapp, M.C. Investigations into the Structure and Properties of Perovskites, Layered Perovskites, and Defect Pyrochlores. // Ph.D. Thesis. The Ohio State University. 2006. 179 p.
  16. 16. Li, B.-W., Osada, M., Ozawa, T. C., Sasaki, T. RbBiNb2O7: A New Lead-Free High-Tc Ferroelectric. // Chemistry of Materials. 2012. V. 24. №16. PP. 3111–3113.
  17. 17. Liang Z. Synthesis and Characterization of New Layered Perovskite Phases. // A dissertation for doctor's degree. University of Science and Technology of China. 2009. 132 p.
  18. 18. Lichtenberg, F. Synthesis of Perovskite-Related Layered AnBnO3n+2 = ABOX Type Niobates and Titanates and Study of Their Structural, Electric and Magnetic Properties. // Progress in Solid State Chemistry. 2001. V. 29. №1–2. PP. 1–70.
  19. 19. Liu, J.W., Chen, G., Li, Z.H., Zhang Z.G. Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3 (A = Na and K). // International Journal of Hydrogen Energy. 2007. V. 32. №13. PP. 2269–2272.
  20. 20. Montasserasadi, D., Granier, M.W., Spinu, L., Rai, S.C., Zhou, W., Wiley, J. Synthesis and characterization of the rare-earth Dion-Jacobson layered perovskites, APrNb2O7 (A=Rb, Cs and CuCl). // Dalton Transactions. 2015. V. 44. №23. PP. 10654–10660.
  21. 21. Ruddlesden, S.N., Popper. P. New compounds of the K2NiF4 type. // Acta Crystallographica. 1957. V. 10. №8. PP. 538–539.
  22. 22. Ruddlesden, S.N., Popper. P. The compound Sr3Ti2O7 and its structure. // Acta Crystallographica. 1958. V. 11. №1. PP. 54–55.
  23. 23. Sarahan, M.C., Carroll, E.C., Allen, M., Larsen, D.S., Browning, N.D., Osterloh, F.E. K4Nb6O17-derived photocatalysts for hydrogen evolution from water: nanoscrolls versus nanosheets. // Journal of Solid State Chemistry. 2008. V. 181. №7. PP. 1678–1683.
  24. 24. Sato, M., Abo, J., Jin, T., & Ohta, M. Structure Determination of KLaNb2O7 Exhibiting Ion Exchange Ability by X-Ray Powder Diffraction. // Solid State Ionics. 1992. V. 51. №1–2. PP. 85–89.
  25. 25. Shimazu, M., Tanokura, Y., & Tsutsumi, S. X-Ray Diffraction and Dielectric Studies on the K2BiNb5O15-K2LaNb5O15 System. // Japanese Journal of Applied Physics, Part 1. 1989. V. 28. PP. 1877–1881.
  26. 26. Snedden, A., Knight, K.S., Lightfoot, P. Structural Distortions in the Layered Perovskites CsANb2O7 (A = Nd, Bi). // Journal of Solid State Chemistry. 2003. V. 173. PP. 309–313.
  27. 27. Subhadip, M., Gibbs, A.S., Zhang, W., Halasyamani, P.S., Benedek, N.A., & Hayward, M.A. Polar Structures of KNdNb2O7 and KNdTa2O7. // Chemistry of Materials. 2020. V. 32. №18. PP. 7965–72.
  28. 28. Subhadip, M., Khalsa, G., Kaaret, J.Z., Zhang, W., Batuk, M., Gibbs, A.S., Hadermann, J., Halasyamani, P.S., Benedek, N.A., & Hayward, M.A. The Influence of the 6s2 Configuration of Bi3+ on the Structures of A′BiNb2O7 (A′ = Rb, Na, Li) Layered Perovskite Oxides. // Dalton Transactions. 2021. V. 50. №42. PP. 15359–15369.
  29. 29. Subhadip, M., Zhang, W., Batuk, M., Gibbs, A.S., Hadermann, J., Halasyamani, P.S., & Hayward, M.A. The Crystal and Defect Structures of Polar KBiNb2O7. // Dalton Transactions. 2022. V. 51. №5. PP. 1866–1873.
  30. 30. Thangadurai, V., Shukla, A.K., Gopalakrishnan, J. Proton conduction in layered perovsikite oxides. // Solid State Ionics. 1994. V. 73. №1–2. PP. 9–14.
  31. 31. Viciu, L, Caruntu, G, Royant, N, Koenig, J., Zhou, W.L., Kodenkandath, T.A., Wiley, J.B. Formation of Metal-Anion Arrays within Layered Perovskite Hosts. Preparation of a Series of New Metastable Transition-Metal Oxyhalides, (MCl)LaNb2O7 (M=Cr, Mn, Fe, Co). // Inorganic chemistry. 2002. V. 41. №13. PP. 3385–3388.
  32. 32. Viciu, L., Golub, V.O., Wiley J.B. Structural, thermal and magnetic characterization of the manganese oxyhalide layered perovskite, (MnCl)LaNb2O7. // Journal of Solid State Chemistry. 2003. V. 175. №1. PP. 88–93.
  33. 33. Wu, L., Zhang, H., Zhang, J., Guo, C., Ji, Z., Bai, X. Preparation and PL properties of the layered down-conversion material: KLa0.90Nb2O7: Eu3+. // Journal of Optoelectronics Laser. 2015. V.26. №12. PP. 2340–2345.

Comments(0)

When adding a comment stipulate:
  • the relevance of the published material;
  • general estimation (originality and relevance of the topic, completeness, depth, comprehensiveness of topic disclosure, consistency, coherence, evidence, structural ordering, nature and the accuracy of the examples, illustrative material, the credibility of the conclusions;
  • disadvantages, shortcomings;
  • questions and wishes to author.