Центр научного сотрудничества "Интерактив плюс"
info@interactive-plus.ru
+7 (8352) 222-490
2130122532
Центр научного сотрудничества «Интерактив плюс»
RU
428000
Чувашская Республика
г.Чебоксары
ул.Гражданская, д.75
428000, Россия, Чувашская Республика, г. Чебоксары, улица Гражданская, дом 75
+7 (8352) 222-490
RU
428000
Чувашская Республика
г.Чебоксары
ул.Гражданская, д.75
56.125001
47.208966

Terahertz-Graphene-Metasurface Based Biosensor with Dual-Resonance Response as a tool for cancer detection using cell specific frequency

Research Article
DOI: 10.21661/r-559399
Open Access
Monthly international scientific journal «Interactive science»
Creative commons logo
Published in:
Monthly international scientific journal «Interactive science»
Author:
Khussein A. 1
Work direction:
Технические науки
Rating:
Article accesses:
637
Published in:
eLibrary.ru
1 FSBEI of HE "Bauman Moscow State Technical University"
For citation:
Khussein A. (2023). Terahertz-Graphene-Metasurface Based Biosensor with Dual-Resonance Response as a tool for cancer detection using cell specific frequency. Interactive science, 73-77. https://doi.org/10.21661/r-559399

  • Metadata
  • Full text
  • Metrics
UDC 69

Abstract

Early detection is the most important strategy for controlling and management of cancer, which can significantly increase the survival rate by detecting disease in the early stages and rapid treating and preventing the progression of the disease. Based on existence of specific cell frequencies in the form of the response of each cell to its own specific frequency and the difference between normal and tumor cell frequency levels as a hallmark for cancer detection, we suggest using Graphene-based metasurfaces. Owing to the outstanding physical properties of graphene, its biosensing applications implemented by the terahertz metasurface are widely concerned and studied.a novel design of the graphene metasurface, proposed by ( Tan et al., 12) consists of an individual graphene ring and an Hshaped graphene structure. The graphene metasurface exhibits a dual-resonance response, whose resonance frequency strongly varies with its geometrical parameters. The simulated results clearly show that the theoretical sensitivity, figure of merit, and quantity of the proposed graphene metasurface for breast cells reach 1.21 THz/RIU, 2.75 RIU-1, and 2.43, respectively. These findings may open up new avenues for promising applications in the diagnosis of cancers.

References

  1. 1. Jacquelyn W.Z. Targeted treatment of cancer with radiofrequency electromagnetic fields amplitude-modulated at tumor-specific frequencies / W.Z. Jacquelyn, J. Hugo, B. Pasche // Chin J Cancer. ‒ 2013. ‒ №32 (11). ‒ P. 573–581. ‒ DOI 10.5732/cjc.013.10177
  2. 2. Trock D.H. The effect of pulsed electromagnetic fields in the treatment of osteoarthritis of the knee and cervical spine. Report of randomized, double blind, placebo controlled trials / D.H. Trock, A.J. Bollet, R. Markoll // J Rheumatol. ‒ 1994. ‒ №21. ‒ P. 1903–1911.
  3. 3. Aaron R.K. Treatment of nonunions with electric and electromagnetic fields / R.K. Aaron, D.M. Ciombor, B.J. Simon // Clin Orthop Relat Res. ‒ 2004. ‒ №419. ‒ P. 21–29.
  4. 4. Hronik-Tupaj M. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields / M. Hronik-Tupaj, W.L. Rice, M. Cronin-Golomb [et al.] // Biomed Eng Online. ‒ 2011. ‒ №10. ‒ P. 9.
  5. 5. Mirza A.N. Radiofrequency ablation of solid tumors / A.N. Mirza, B.D. Fornage, N. Sneige [et al.] // Cancer J. ‒ 2001. ‒ №7. ‒ P. 95.
  6. 6. Ripley R.T. Sequential radiofrequency ablation and surgical debulking for unresectable colorectal carcinoma: thermo-surgical ablation / R.T. Ripley, C. Gajdos, A.E. Reppert [et al.] // J Surg Oncol. ‒ 2013. ‒ №107. ‒ P. 144–147.
  7. 7. Stupp R. Novottf-100a versus physician's choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality / R. Stupp, E.T. Wong, A.A. [et al.] // Kanner Eur J Cancer. ‒ 2012. ‒ №48. ‒ P. 2192–2202.
  8. 8. Barbault A. Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach / A. Barbault, F.P. Costa, B. Bottger [et al.] // J Exp Clin Cancer Res. ‒ 2009. ‒ 28.
  9. 9. Watson J.M. Selective potentiation of gynecologic cancer cell growth in vitro by electromagnetic fields / J.M. Watson, E.A. Parrish, C.A. Rinehart // Gynecol Oncol. ‒ 1998. ‒ №71. ‒ P. 64–71.
  10. 10. Barbault F.P. Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach / F.P. Barbault, B. Bottger Costa // J. Exp. Clin. Cancer Res. ‒ 2009. ‒ №28. ‒ P. 51
  11. 11. Vedruccio C. Non invasive radiofrequency diagnostics of cancer. The bioscanner-trimprob technology and clinical applications / C. Vedruccio, C.R. Vedruccio // J. Phys. Conf. Ser. ‒ 2011.
  12. 12. Tan C. Cancer Diagnosis Using Terahertz GrapheneMetasurface-Based Biosensor with Dual-Resonance Response / C. Tan, S. Wang, S. Li [et al.].
  13. 13. Zhu W. Black phosphorus terahertz sensing based on photonic spin Hall effect / W. Zhu, H. Xu, J. Pan [et al.] // Opt. Express. ‒ 2020. ‒ №28. ‒ P. 25869–25878.
  14. 14. Reina A. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition / A. Reina, X. Jia, J. Ho [et al.] // Nano Lett. ‒ 2009. ‒ №9. ‒ P. 30–35.
  15. 15. Wang Z. Fast-printed, large-area and low-cost terahertz metasurface using laser-induced graphene / Z. Wang, G. Wang, B. Hu [et al.] // Carbon. ‒ 2022. ‒ №187. ‒ P. 256–265.
  16. 16. Shahil K.M. Graphene-multilayer graphene nanocomposites as highly efficient6 thermal interface materials / K.M. Shahil, A.A. Balandin // Nano Lett. ‒ 2012. №12. ‒ P. 861–867 [CrossRef].
  17. 17. Mou N. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. / N. Mou, S. Sun, H. Dong [et al.] // Opt. Express. ‒ 2018. ‒ №26. ‒ P. 11728–11736 [CrossRef].
  18. 18. Chen C.F. Controlling inelastic light scattering quantum pathways in graphene / C.F. Chen, C.H. Park, B.W. Boudouris [et al.] // Nature. ‒ 2011. ‒ №471. ‒ P. 617–620 [CrossRef].
  19. 19. Garcia de Abajo F.J. Graphene plasmonics: Challenges and opportunities / F.J. Garcia de Abajo // ACS Photonics. ‒ 2014. ‒ №1. ‒ P. 135–152.
  20. 20. Jafari M. Cell-specific frequency as a new hallmark to early detection of cancer and efficient therapy: Recording of cancer voice as a new horizon / M. Jafari, M. Hasanzadeh // Journal of Biomedicine and Pharmocotherapy. ‒ 2020. ‒ Vol. 122.
  21. 21. Jornet J.M. Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band Proceedings of the Fourth European Conference on Antennas and Propagation / J.M. Jornet, I.F. Akyildiz // IEEE. ‒ 2010. ‒ P. 1–5.
  22. 22. Ziegler K.J. Developing implantable optical biosensors / K.J. Ziegler // Trends Biotechnol. ‒ 2005. ‒ №23 (9). ‒ P. 440–444.
  23. 23. Abel P.U. Biosensors for in vivo glucose measurement: can we cross the experimental stage / P.U. Abel, T. von Woedtke // Biosens. Bioelectron. ‒ 2002. ‒ №17 (11–12). ‒ P. 1059–1070.

Comments(0)

When adding a comment stipulate:
  • the relevance of the published material;
  • general estimation (originality and relevance of the topic, completeness, depth, comprehensiveness of topic disclosure, consistency, coherence, evidence, structural ordering, nature and the accuracy of the examples, illustrative material, the credibility of the conclusions;
  • disadvantages, shortcomings;
  • questions and wishes to author.