Центр научного сотрудничества "Интерактив плюс"
info@interactive-plus.ru
+7 (8352) 222-490
2130122532
Центр научного сотрудничества «Интерактив плюс»
RU
428000
Чувашская Республика
г.Чебоксары
ул.Гражданская, д.75
428000, Россия, Чувашская Республика, г. Чебоксары, улица Гражданская, дом 75
+7 (8352) 222-490
RU
428000
Чувашская Республика
г.Чебоксары
ул.Гражданская, д.75
56.125001
47.208966

Business applications of machine learning in the retail sector within the «Industry 4.0» concept

Research Article
DOI: 10.21661/r-561003
Open Access
Monthly international scientific journal «Interactive science»
Creative commons logo
Published in:
Monthly international scientific journal «Interactive science»
Author:
Malyzhenkov P.V. 1
Work direction:
Экономика
Rating:
Article accesses:
530
Published in:
eLibrary.ru
Cited by:
1 articles
1 FGAOU VO "Natsional'nyi issledovatel'skii universitet "Vysshaia shkola ekonomiki"
For citation:
Malyzhenkov P. V. (2023). Business applications of machine learning in the retail sector within the «Industry 4.0» concept. Interactive science, 79-81. https://doi.org/10.21661/r-561003

  • Metadata
  • Full text
  • Metrics
  • Cited by
UDC 33

Abstract

The article states that in the landscape of contemporary business, marked by rapid technological advancements and evolving consumer expectations, the relevance of different aspects of business applications of the machine learning as one of the enabling technologies of «Industry 4.0» is paramount.

References

  1. 1. Hernavs J. Deep learning in industry 4.0-brief overview / J. Hernavs // J. Prod. Eng. – 2018. – Т. 21. №.2. – pp. 1–5.
  2. 2. Angelopoulos A. Tackling faults in the industry 4.0 era – a survey of machine-learning solutions and key aspects / A. Angelopoulos // Sensors. – 2019. – Т. 20. №.1. – p. 109.
  3. 3. Rai R. Machine learning in manufacturing and industry 4.0 applications / R. Rai // International Journal of Production Research. – 2021. – Т. 59. №.16. – pp. 4773–4778.
  4. 4. Wu C.D. Facial emotion recognition using deep learning / C.D. Wu, L.H. Chen // arXiv preprint arXiv:1910.11113. – 2019.
  5. 5. Tammina S. Transfer learning using vgg-16 with deep convolutional neural network for classifying images / S. Tammina // International Journal of Scientific and Research Publications (IJSRP). – 2019. – Т. 9. №10. – pp. 143–150.

Comments(0)

When adding a comment stipulate:
  • the relevance of the published material;
  • general estimation (originality and relevance of the topic, completeness, depth, comprehensiveness of topic disclosure, consistency, coherence, evidence, structural ordering, nature and the accuracy of the examples, illustrative material, the credibility of the conclusions;
  • disadvantages, shortcomings;
  • questions and wishes to author.