Rectangles in Lobachevskian Geometry Contradict Euclid's 4th Postulate
Research Article
DOI: 10.21661/r-551656
Open Access


- Published in:
- Monthly international scientific journal «Interactive science»
- Authors:
- Chemeris V. D. 1 , Chemeris I.A. 2
- Work direction:
- Физика
- Rating:
- Article accesses:
- 1648
- Published in:
- eLibrary.ru
1 net dannykh
2 MBOU SOSh 143
2 MBOU SOSh 143
- APA
For citation:
Chemeris V. D., & Chemeris I. A. (2020). Rectangles in Lobachevskian Geometry Contradict Euclid's 4th Postulate. Interactive science, 54-56. https://doi.org/10.21661/r-551656
- Full text
- Metrics
UDC 514
DOI: 10.21661/r-551656
Abstract
This article can be considered the final proof of Euclid’s 5th postulate. Nevertheless, its main purpose is to show that the difference between Lobachevskian and Euclidean geometry is much more significant than is commonly believed to date.
Keywords
References
- 1. Atanasian, L. S. (2017). Geometriia Lobachevskogo., 467. M.: Laboratoriia znanii.
- 2. Bakhvalov, S. V., & Ivanitskaia, V. P. (1972). Osnovaniia geometrii (glavy vysshei geometrii)., 280. M.: Vysshaia shkola.
- 3. Iovlev, N. N. (1930). Vvedenie v elementarnuiu geometriiu i trigonometriiu Lobachevskogo., 67. M.; L.: Gosizdat.
- 4. Kutuzov, B. V. (1950). Geometriia Lobachevskogo i elementy osnovanii geometrii., 127. M.: Gos. uchebno-pedagogicheskoe izd-vo Ministerstva prosveshcheniia RSFSR.
- 5. Lobachevskii, N. I. (1956). Izbrannye trudy po geometrii., 596. M.: Izd-vo Akademii nauk SSSR.
- 6. (1948). Nachala Evklida. Knigi I-VI., 447. M.: Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoi literatury; L.
- 7. Chemeris, V. D., & Chemeris, I. A. (2020). Rectangles in Lobachevsky Geometry. Interactive science, 5 (51), 60-61.
Comments(0)