Центр научного сотрудничества "Интерактив плюс"
info@interactive-plus.ru
+7 (8352) 222-490
2130122532
Центр научного сотрудничества «Интерактив плюс»
RU
428000
Чувашская Республика
г.Чебоксары
ул.Гражданская, д.75
428000, Россия, Чувашская Республика, г. Чебоксары, улица Гражданская, дом 75
+7 (8352) 222-490
RU
428000
Чувашская Республика
г.Чебоксары
ул.Гражданская, д.75
56.125001
47.208966

Таблетки или лишение сна? Депривация сна как вид терапевтического вмешательства в психиатрии

Научная статья
DOI: 10.21661/r-551967
Open Access
Ежемесячный международный научный журнал «Интерактивная наука»
Creative commons logo
Опубликовано в:
Ежемесячный международный научный журнал «Интерактивная наука»
Авторы:
Анцыборов А.В. 1 , Дубатова И.В. 2 , Калинчук А.В. 3
Рубрика:
Медицина
Рейтинг:
Статья просмотрена:
1729 раз
Размещено в:
eLibrary.ru
1 ООО КМЗ «Психея»
2 ФГБОУ ВО «Ростовский государственный медицинский университет» Минздрава России
3 Гарвардский университет
Для цитирования:
Анцыборов А. В. Таблетки или лишение сна? Депривация сна как вид терапевтического вмешательства в психиатрии / А. В. Анцыборов, И. В. Дубатова, А. В. Калинчук // Интерактивная наука. – 2020. – С. 16-32. – ISSN 2414-9411. – DOI 10.21661/r-551967.

  • Метаданные
  • Полный текст
  • Метрики
УДК 61

Аннотация

В последние десятилетия метод депривации сна прошел путь от единичных экспериментальных данных до статуса эффективного и доступного терапевтического вмешательства, применяемого в ежедневной клинической практике. Механизм действия данного метода нацелен на те же нейромедиаторные системы и области головного мозга, что и антидепрессанты. Как и в случае применения фармакотерапии, депривация сна должна выполняться под тщательным наблюдением врача. Клинические эффекты при применении депривации сна достигаются гораздо быстрее в сравнении с таковыми при применении психофармакотерапии, но при этом не носят долгосрочный характер. Улучшить результаты возможно используя комбинацию фармакотерапии и депривации сна. Применение депривации сна в клинических условиях направлено, прежде всего, на купирование депрессивного синдрома и его рецидивов, а также в случаях резистентных к фармакотерапии. В современных условиях метод депривации сна представляет собой значимую альтернативу традиционным подходам к терапии депрессии.

Благодарности

Финансирование: исследование проводилось при финансовой поддержке медицинского центра «Юг-Клиника» г. Ростов-на-Дону.

Список литературы

  1. 1. Schulte W. Kombinierte psycho- und pharmakotherapie bei melancholikern // Probleme der pharmakopsychiatrischen Kombinations- und Langzeitbehandlung. – Karger Publishers, 1966. – P. 150–169.
  2. 2. Pflug B., R. Tölle. Die Behandlung endogener Depressionen durch Schlafentzug // Zentralblatt der Neurologie und Psychiatrie. – 1969. – Vol. 196. – P. 6; Pflug B., R. Tölle. Therapie endogener depressionen durch schlafentzug // Nervenarzt. – 1971. – Vol. 42. – №117. – P. 1124.
  3. 3. Pflug B. Therapeutic aspects of sleep deprivation // Sleep 1972. – Karger Publishers, 1973. – P. 185–191.
  4. 4. Pflug B. The effect of sleep deprivation on depressed patients // Acta Psychiatrica Scandinavica. – 1976. – Vol. 53. – №2. – P. 148–158.
  5. 5. Voss A., Kind H. Ambulante behandlung endogener depression durch Schlafentzug // Schweiz Rundsch Med. – 1974. – Vol. 63. – P. 564–565.
  6. 6. Kurczewska E. et al. Augmentation of pharmacotherapy by sleep deprivation with sleep phase advance in treatment- resistant depression // Pharmacopsychiatry. – 2019. – Vol. 52. – №04. – P. 186–192.
  7. 7. Ramirez- Mahaluf J. P. et al. Effectiveness of Sleep Deprivation in Treating Acute Bipolar Depression as Augmentation Strategy: A Systematic Review and Meta- Analysis // Frontiers in Psychiatry. – 2020. – Vol. 11.
  8. 8. Suzuki M. et al. Does early response predict subsequent remission in bipolar depression treated with repeated sleep deprivation combined with light therapy and lithium? // Journal of affective disorders. – 2018. – Vol. 229. – P. 371–376.
  9. 9. Krysta K. et al. Sleep and inflammatory markers in different psychiatric disorders // Journal of Neural Transmission. – 2017. – Vol. 124. – №1. – P. 179–186.
  10. 10. Finan P. H. et al. Partial sleep deprivation attenuates the positive affective system: effects across multiple measurement modalities // Sleep. – 2017. – Vol. 40. – №1.
  11. 11. Wirz- Justice A., Benedetti F. Perspectives in affective disorders: Clocks and sleep // European Journal of Neuroscience. – 2020. – Vol. 51. – №1. – P. 346–365.
  12. 12. Coryell W., Clayton P. J. Bipolar Illness // The Medical Basis of Psychiatry. – Springer, New York, NY, 2016. – P. 53–78.
  13. 13. Caskey T. J. What Is the Role of Non- pharmacotherapy in the Treatment of Depression with Cardiovascular Disease? – University of Bridgeport, 2019.
  14. 14. Ozdemir P. G., Atilla E. A Supportive Therapeutic and Diagnostic Modality: Sleep Deprivation // Sleep and Hypnosis (Online). – 2017. – Vol. 19. – №3. – P. 78–79.
  15. 15. Hu B. et al. Meta- analysis of the effects of sleep deprivation on depression in patients and animals // bioRxiv. – 2020.
  16. 16. Sikkens D. et al. Combined sleep deprivation and light therapy: Clinical treatment outcomes in patients with complex unipolar and bipolar depression // Journal of Affective Disorders. – 2019. – Vol. 246. – P. 727–730.
  17. 17. Trautmann N. et al. Response to therapeutic sleep deprivation: a naturalistic study of clinical and genetic factors and post- treatment depressive symptom trajectory // Neuropsychopharmacology. – 2018. – Vol. 43. – №13. – P. 2572–2577.
  18. 18. Dallaspezia S. et al. Chronotype influences response to antidepressant chronotherapeutics in bipolar patients // Chronobiology International. – 2018. – Vol. 35. – №9. – P. 1319–1325.
  19. 19. Dallaspezia S., van Jaarsveld A. Antidepressant chronotherapeutics in a group of drugs free outpatients // Psychiatry Research. – 2016. – Vol. 241. – P. 118–121.
  20. 20. Kleeblatt J. et al. Efficacy of off- label augmentation in unipolar depression: a systematic review of the evidence // European Neuropsychopharmacology. – 2017. – Vol. 27. – №5. – P. 423–441.
  21. 21. Danilenko K. V. et al. A 6- day combined wake and light therapy trial for unipolar depression // Journal of affective disorders. – 2019. – Vol. 259. – P. 355–361.
  22. 22. Geoffroy P. A., Yeim S. Chronobiology and Treatment in Depression // Understanding Depression. – Springer, Singapore, 2018. – P. 123–141.
  23. 23. Yoon R. S. Y., Ravindran N., Ravindran A. Complementary and Alternative Therapies for Treatment- Resistant Depression: A Clinical Perspective // Complex Clinical Conundrums in Psychiatry. – Springer, Cham, 2018. – P. 123–142.
  24. 24. Vargas I., Lopez- Duran N. The cortisol awakening response after sleep deprivation: Is the cortisol awakening response a «response» to awakening or a circadian process? // Journal of Health Psychology. – 2017. – P. 1359105317738323.
  25. 25. Krause A. J. et al. The sleep- deprived human brain // Nature Reviews Neuroscience. – 2017. – Vol. 18. – №7. – P. 404.
  26. 26. Watling J. et al. Sleep loss and affective functioning: more than just mood // Behavioral sleep medicine. – 2017. – Vol. 15. – №5. – P. 394–409.
  27. 27. Simor P. et al. Eveningness is associated with poor sleep quality and negative affect in obsessive- compulsive disorder // Journal of Behavioral Addictions. – 2018. – Vol. 7. – №1. – P. 10–20.
  28. 28. Winokur A. Sleep Disorders and Mental Health, An Issue of Psychiatric Clinics of North America, E- Book. – Elsevier Health Sciences, 2016. – Vol. 38. – №4.
  29. 29. Kumari V., Ettinger U. Controlled sleep deprivation as an experimental medicine model of schizophrenia: An update // Schizophrenia Research. – 2020.
  30. 30. Dallaspezia S., Benedetti F. Sleep in other psychiatric disorders // Oxford Textbook of Sleep Disorders. – 2017. – P. 451.
  31. 31. Feng P. et al. Sleep deprivation affects fear memory consolidation: bi- stable amygdala connectivity with insula and ventromedial prefrontal cortex // Social cognitive and affective neuroscience. – 2018. – Vol. 13. – №2. – P. 145–155.
  32. 32. El- Solh A. A. Management of nightmares in patients with posttraumatic stress disorder: current perspectives // Nature and Science of Sleep. – 2018. – Vol. 10. – P. 409.
  33. 33. Tobaldini E. et al. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases // Neuroscience & Biobehavioral Reviews. – 2017. – Vol. 74. – P. 321–329.
  34. 34. Pires G. N. et al. Effects of acute sleep deprivation on state anxiety levels: a systematic review and meta- analysis // Sleep medicine. – 2016. – Vol. 24. – P. 109–118.
  35. 35. Nita D. A., Weiss S. K. Sleep and Epilepsy // Sleep in Children with Neurodevelopmental Disabilities. – Springer, Cham, 2019. – P. 227–240.
  36. 36. Keir L. H. M., Breen D. P. New awakenings: current understanding of sleep dysfunction and its treatment in Parkinson’s disease // Journal of Neurology. – 2020. – Vol. 267. – №1. – P. 288–294.
  37. 37. Waters F. et al. Severe sleep deprivation causes hallucinations and a gradual progression toward psychosis with increasing time awake // Frontiers in psychiatry. – 2018. – Vol. 9. – P. 303.
  38. 38. Sawant N. S., Thakurdesai A. Case report: Sleep deprivation presenting as acute psychosis // Indian Journal of Case Reports. – 2018. – P. 142–143.
  39. 39. Dopieraіa E. et al. Factors connected with the efficacy of total sleep deprivation with sleep phase advance in treatment- resistant depression // Age (years). – 2016. – Vol. 46. – P. 14.
  40. 40. Rantamäki T., Kohtala S. Encoding, Consolidation, and Renormalization in Depression: Synaptic Homeostasis, Plasticity, and Sleep Integrate Rapid Antidepressant Effects // Pharmacological Reviews. – 2020. – Vol. 72. – №2. – P. 439–465.
  41. 41. Wu J. C., Bunney B. G. Sleep deprivation therapy: A rapid- acting antidepressant // Sleep and Psychosomatic Medicine. – 2017. – P. 295.
  42. 42. Humpston C. et al. Chronotherapy for the rapid treatment of depression: A meta- analysis // Journal of affective disorders. – 2020. – Vol. 261. – P. 91–102.
  43. 43. Kragh M. et al. Wake and light therapy for moderate- to- severe depression- a randomized controlled trial // Acta Psychiatrica Scandinavica. – 2017. – Vol. 136. – №6. – P. 559–570.
  44. 44. Goldschmied J. R. The Effects of Sleep Manipulation on Emotional Processing and Mood. – 2016.
  45. 45. Machado- Vieira R., Henter I. D., Zarate Jr C. A. New targets for rapid antidepressant action // Progress in neurobiology. – 2017. – Vol. 152. – P. 21–37.
  46. 46. Gottlieb J. F. et al. The chronotherapeutic treatment of bipolar disorders: A systematic review and practice recommendations from the ISBD task force on chronotherapy and chronobiology // Bipolar disorders. – 2019. – Vol. 21. – №8. – P. 741–773.
  47. 47. Tamm S. et al. Effects of partial sleep deprivation on emotional contagion in humans: a combined fMRI and EMG study in young and older individuals. – 2020.
  48. 48. Skorucak J. et al. Response to chronic sleep restriction, extension, and total sleep deprivation in humans: adaptation or preserved sleep homeostasis? // Sleep. – 2018.
  49. 49. McCarthy A. et al. REM sleep homeostasis in the absence of REM sleep: Effects of antidepressants // Neuropharmacology. – 2016. – Vol. 108. – P. 415–425.
  50. 50. Steiger A., Pawlowski M. Depression and sleep // International journal of molecular sciences. – 2019. – Vol. 20. – №3. – P. 607.
  51. 51. Vogel G. W. A review of REM sleep deprivation // Archives of General Psychiatry. – 1975. – Vol. 32. – №6. – P. 749–761.
  52. 52. Grözinger M., Kögel P., Röschke J. Effects of REM sleep awakenings and related wakening paradigms on the ultradian sleep cycle and the symptoms in depression // Journal of psychiatric research. – 2002. – Т. 36. – №5. – P. 299–308.
  53. 53. Genzel L. et al. Slow wave sleep and REM sleep awakenings do not affect sleep dependent memory consolidation // Sleep. – 2009. – Vol. 32. – №3. – P. 302–310.
  54. 54. Bovy L., Dresler M., Weber F. D. Sleep spindles and cognition in depression. – 2017.
  55. 55. Lia M. M. The Advantages of Substitution of REM Sleep Stages with Waking Episodes to Perform REM Sleep Reduction // EC Neurology. – 2019. – Vol. 11. – P. 400–407
  56. 56. Schilgen B., Tölle R. Partial sleep deprivation as therapy for depression // Archives of General Psychiatry. – 1980. – Vol. 37. – №3. – P. 267–271.
  57. 57. Winkler D. et al. Usage of therapeutic sleep deprivation: a survey in psychiatric hospitals in Austria, Germany, and Switzerland //Behavioral sleep medicine. – 2018.
  58. 58. Kilic E. K., Caliyurt O. Triple Chronotherapy for Bipolar Depression: A Case Report // Turk Psikiyatri Dergisi. – 2019. – Vol. 30. – №3. – P. 220.
  59. 59. Wirz- Justice A., Van den Hoofdakker R. H. Sleep deprivation in depression: what do we know, where do we go? // Biological psychiatry. – 1999. – Vol. 46. – №4. – P. 445–453.
  60. 60. Joiner W. J. The neurobiological basis of sleep and sleep disorders //Physiology. – 2018. – Т. 33. – №5. – P. 317–327.
  61. 61. Khalifeh A.H. The effect of chronotherapy on depressive symptoms: Evidence- based practice // Saudi medical journal. – 2017. – Vol. 38. – №5. – P. 457.
  62. 62. Giedke H., Geilenkirchen R., Hauser M. The timing of partial sleep deprivation in depression // Journal of affective disorders. – 1992. – Vol. 25. – №2. – P. 117–128.
  63. 63. Kurczewska E. et al. Treatment- resistant depression: neurobiological correlates and the effect of sleep deprivation with sleep phase advance for the augmentation of pharmacotherapy // The World Journal of Biological Psychiatry. – 2020. – P. 1–12.
  64. 64. Merritt D. L. Chronotype preference, partial sleep deprivation, and executive functions performance throughout the wake- cycle. – 2016.
  65. 65. Veasey S. C. Sleep Deprivation // Review of Sleep Medicine E- Book. – 2017. – P. 110.
  66. 66. Landsness E. C. et al. Antidepressant effects of selective slow wave sleep deprivation in major depression: a high- density EEG investigation //Journal of psychiatric research. – 2011. – Vol. 45. – №8. – P. 1019–1026.
  67. 67. Tang Q. et al. A systematic review for the antidepressant effects of sleep deprivation with repetitive transcranial magnetic stimulation // BMC psychiatry. – 2015. – Vol. 15. – №1. – P. 282.
  68. 68. Zaki N. F. W. et al. Chronobiological theories of mood disorder // European archives of psychiatry and clinical neuroscience. – 2018. – Vol. 268. – №2. – P. 107–118.
  69. 69. Extein I. et al. Antidepressants: predicting response/maximizing efficacy // Advances in Psychopharmacology: Improving Treatment Response. – 2018. – P. 30.
  70. 70. DeVylder J. Sleep as an underused target for rapid response in the treatment of depression and suicidal ideation // Health & Social Work. – 2016. – Vol. 41. – №3. – P. 211–211.
  71. 71. Franzen P. L., Buysse D. J. Sleep in psychiatric disorders //Sleep disorders medicine. – Springer, New York, NY, 2017. – P. 977–996.
  72. 72. Honma A. et al. Effect of acute total sleep deprivation on plasma melatonin, cortisol and metabolite rhythms in females // European Journal of Neuroscience. – 2020. – Т. 51. – №1. – P. 366–378.
  73. 73. Gold M. S., Carman J. S. Thyroid failure and clinical misdiagnosis // Advances in Psychopharmacology: Improving Treatment Response. – 2018. – P. 19.
  74. 74. Berent D. Depression: Correlations with Thyroid Hormones in Major Depressive Disorder // Melatonin, Neuroprotective Agents and Antidepressant Therapy. – Springer, New Delhi, 2016. – P. 357–363.
  75. 75. Enache D., Pariante C. M., Mondelli V. Markers of central inflammation in major depressive disorder: A systematic review and meta- analysis of studies examining cerebrospinal fluid, positron emission tomography and post- mortem brain tissue // Brain, behavior, and immunity. – 2019. – Vol. 81. – P. 24–40.
  76. 76. Woelfer M. et al. The role of depressive subtypes within the neuroinflammation hypothesis of major depressive disorder // Neuroscience. – 2019. – Vol. 403. – P. 93–110.
  77. 77. Kopschina Feltes P. et al. Anti- inflammatory treatment for major depressive disorder: implications for patients with an elevated immune profile and non- responders to standard antidepressant therapy // Journal of Psychopharmacology. – 2017. – Vol. 31. – №9. – P. 1149–1165.
  78. 78. Crooks K. E. et al. The Impact of Sleep Deprivation and Stress Reactivity on Interleukin-6. – 2019.
  79. 79. Agorastos A. et al. Relations of combat stress and posttraumatic stress disorder to 24- h plasma and cerebrospinal fluid interleukin- 6 levels and circadian rhythmicity // Psychoneuroendocrinology. – 2019. – Vol. 100. – P. 237–245.
  80. 80. Kennedy J. M. Effects of sleep deprivation on immune function via cortisol and catecholamines. – Boston University, 2016.
  81. 81. Satyanarayanan S. K. et al. Melatonergic agonist regulates circadian clock genes and peripheral inflammatory and neuroplasticity markers in patients with depression and anxiety // Brain, behavior, and immunity. – 2020. – Vol. 85. – P. 142–151.
  82. 82. Irwin M. R. Sleep and inflammation: partners in sickness and in health // Nature Reviews Immunology. – 2019. – Т. 19. – №11. – С. 702–715.
  83. 83. Cross N., Dang- Vu T. T. Imaging of the Sleep- Disordered Brain // Handbook of Behavioral Neuroscience. – Elsevier, 2019. – Vol. 30. – P. 569–591.
  84. 84. Arslan A. Application of Neuroimaging in the Diagnosis and Treatment of Depression // Understanding Depression. – Springer, Singapore, 2018. – P. 69–81.
  85. 85. Brown E. C. et al. Metabolic activity in subcallosal cingulate predicts response to deep brain stimulation for depression // Neuropsychopharmacology. – 2020. – P. 1–8.
  86. 86. Baudry A. et al. Multifaceted regulations of the serotonin transporter: impact on antidepressant response // Frontiers in neuroscience. – 2019. – Vol. 13. – P. 91.
  87. 87. Kragh M. et al. Predictors of response to combined wake and light therapy in treatment- resistant inpatients with depression // Chronobiology international. – 2018. – Vol. 35. – №9. – P. 1209–1220.
  88. 88. Lee H. J. Circadian misalignment and bipolar disorder // Chronobiology in Medicine. – 2019. – Vol. 1. – №4. – P. 132–136.
  89. 89. McCarthy M. J. et al. Chronotype and cellular circadian rhythms predict the clinical response to lithium maintenance treatment in patients with bipolar disorder // Neuropsychopharmacology. – 2019. – Vol. 44. – №3. – P. 620–628.
  90. 90. Gottlieb J. F., Terman M. Outpatient triple chronotherapy for bipolar depression: case report // Journal of Psychiatric Practice®. – 2012. – Vol. 18. – №5. – P. 373–380.
  91. 91. D'Agostino A. et al. Efficacy of Triple Chronotherapy in Unipolar and Bipolar Depression: a systematic review of the available evidence // Journal of Affective Disorders. – 2020.
  92. 92. Stern S. et al. Prediction of Response to Drug Therapy in Psychiatric Disorders // Focus. – 2019. – Vol. 17. – №3. – P. 294–307.
  93. 93. Kirschbaum- Lesch I., Holtmann M., Legenbauer T. Chronotherapy for Adolescent Major Depression // Neurotechnology and Brain Stimulation in Pediatric Psychiatric and Neurodevelopmental Disorders. – Academic Press, 2019. – P. 313–334.
  94. 94. Timtim S., Welsh D. K. Circadian Rhythm Disorders and Chronotherapy for Mood Disorders // Sleep Medicine and Mental Health. – Springer, Cham, 2020. – P. 189–210.
  95. 95. Dijk D. J., Landolt H. P. Sleep physiology, circadian rhythms, waking performance and the development of sleep- wake therapeutic // Sleep- Wake Neurobiology and Pharmacology. – 2019. – P. 441–481.
  96. 96. Zanos P. et al. Convergent mechanisms underlying rapid antidepressant action // CNS drugs. – 2018. – Vol. 32. – №. 3. – p. 197–227.
  97. 97. de Montigny C., Chaput Y., Blier P. Lithium Augmentation of Antidepressant // New Concepts in Depression. – 2017. – P. 144.
  98. 98. Dell’Osso L. et al. A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts // Neuropsychiatric disease and treatment. – 2016. – Vol. 12. – P. 1687.
  99. 99. Garbazza C., Benedetti F. Genetic factors affecting seasonality, mood, and the circadian clock // Frontiers in endocrinology. – 2018. – Vol. 9. – P. 481.
  100. 100. Brown W. A. Lithium: A Doctor, a Drug, and a Breakthrough. – Liveright Publishing, 2019.
  101. 101. Caliyurt O., Guducu F. Partial sleep deprivation therapy combined with sertraline affects subjective sleep quality in major depressive disorder // Sleep Medicine. – 2005. – Vol. 6. – №6. – P. 555–559.
  102. 102. Benedetti F. et al. Ongoing lithium treatment prevents relapse after total sleep deprivation // Journal of clinical psychopharmacology. – 1999. – Vol. 19. – №3. – P. 240–245.
  103. 103. Smith G. S. et al. Cerebral glucose metabolic response to combined total sleep deprivation and antidepressant treatment in geriatric depression // American Journal of Psychiatry. – 1999. – Vol. 156. – №. 5. P. 683–689.
  104. 104. Smeraldi E. et al. Sustained antidepressant effect of sleep deprivation combined with pindolol in bipolar depression: a placebo- controlled trial // Neuropsychopharmacology. – 1999. – Vol. 20. – №4. – P. 380–385.
  105. 105. Kuhs H. et al. Repeated sleep deprivation once versus twice a week in combination with amitriptyline // Journal of affective disorders. – 1998. – Vol. 47. – №1–3. – P. 97–103.
  106. 106. Bump G. M. et al. Accelerating response in geriatric depression: a pilot study combining sleep deprivation and paroxetine // Depression and Anxiety. – 1997. – Vol. 6. – №3. – P. 113–118.
  107. 107. Kuhs H. et al. Amitriptyline in combination with repeated late sleep deprivation versus amitriptyline alone in major depression. A randomised study // Journal of affective disorders. – 1996. – Vol. 37. – №1. – P. 31–41.
  108. 108. Leibenluft E. et al. A clinical trial of sleep deprivation in combination with antidepressant medication //Psychiatry Research. – 1993. – Vol. 46. – №3. – P. 213–227.
  109. 109. Shelton R. C., Loosen P. T. Sleep deprivation accelerates the response to nortriptyline // Progress in Neuro- Psychopharmacology and Biological Psychiatry. – 1993. – Vol. 17. – №1. – P. 113–123.
  110. 110. Kasper S. et al. Therapeutic sleep deprivation and antidepressant medication in patients with major depression // European Neuropsychopharmacology. – 1991. – Vol. 1. – №2. – P. 107–111.
  111. 111. Kasper S. et al. Response to total sleep deprivation before and during treatment with fluvoxamine or maprotiline in patients with major depression- results of a double- blind study // Pharmacopsychiatry. – 1990. – Vol. 23. – №03. – P. 135–142.
  112. 112. Kirschbaum I. et al. Short- term effects of wake- and bright light therapy on sleep in depressed youth // Chronobiology international. – 2018. – Vol. 35. – №1. – P. 101–110.
  113. 113. Cunningham J. E. A., Stamp J. A., Shapiro C. M. Sleep and major depressive disorder: A review of non- pharmacological chronotherapeutic treatments for unipolar depression // Sleep medicine. – 2019. – Vol. 61. – P. 6–18.
  114. 114. Tseng P. T. et al. Light therapy in the treatment of patients with bipolar depression: A meta- analytic study // European Neuropsychopharmacology. – 2016. – Vol. 26. – №6. – P. 1037–1047.
  115. 115. Geoffroy P. A. et al. Efficacy of light therapy versus antidepressant drugs, and of the combination versus monotherapy, in major depressive episodes: A systematic review and meta- analysis // Sleep medicine reviews. – 2019. – Vol. 48. – P. 101213.
  116. 116. Campbell P. D., Miller A. M., Woesner M. E. Bright Light Therapy: Seasonal Affective Disorder and Beyond // The Einstein journal of biology and medicine: EJBM. – 2017. – Vol. 32. – P. E13.
  117. 117. Zhou T. et al. Clinical efficacy, onset time and safety of bright light therapy in acute bipolar depression as an adjunctive therapy: a randomized controlled trial // Journal of affective disorders. – 2018. – Vol. 227. – P. 90–96.
  118. 118. Echizenya M. et al. Total sleep deprivation followed by sleep phase advance and bright light therapy in drug- resistant mood disorders // Journal of affective disorders. – 2013. – Vol. 144. – №1–2. – P. 28–33.
  119. 119. Voderholzer U. Sleep deprivation and antidepressant treatment // Dialogues in Clinical Neuroscience. – 2003. – Vol. 5. – №4. – p. 366.
  120. 120. Wirz- Justice A. et al. Chronotherapeutics (light and wake therapy) in affective disorders // Psychological medicine. – 2005. – Vol. 35. – №7. – P. 939–944.
  121. 121. Dallaspezia S., Benedetti F. Sleep deprivation as a therapy in psychiatry // Sleep Deprivation and Disease. – Springer, New York, NY, 2014. – P. 77–87.
  122. 122. del Carmen Cano- Lozano M. et al. Efectos terapéuticos de la privación de sueño en la depresión // International Journal of Clinical and Health Psychology. – 2003. – Vol. 3. – №3. – P. 541–563.
  123. 123. Colombo C. et al. Total sleep deprivation combined with lithium and light therapy in the treatment of bipolar depression: replication of main effects and interaction // Psychiatry research. – 2000. – Vol. 95. – №1. – P. 43–53.
  124. 124. Ringel B. L., Szuba M. P. Potential mechanisms of the sleep therapies for depression // Depression and Anxiety. – 2001. – Vol. 14. – №1. – P. 29–36.
  125. 125. Benedetti F., Colombo C. Sleep deprivation in mood disorders // Neuropsychobiology. – 2011. – Vol. 64. – №3. – P. 141–151.
  126. 126. Cunningham J. E. A. Investigating Chronotherapeutic Interventions for the Treatment of Depression. – 2018.
  127. 127. Wehr T. A. et al. 48-hour sleep-wake cycles in manic- depressive illness: naturalistic observations and sleep deprivation experiments // Archives of general psychiatry. – 1982. – Vol. 39. – №. 5. – P. 559–565.
  128. 128. Colombo C. et al. Rate of switch from depression into mania after therapeutic sleep deprivation in bipolar depression // Psychiatry research. – 1999. – Vol. 86. – №3. – P. 267–270
  129. 129. Benedetti F. et al. Sleep phase advance and lithium to sustain the antidepressant effect of total sleep deprivation in bipolar depression: new findings supporting the internal coincidence model? // Journal of psychiatric research. – 2001. – Vol. 35. – №6. – P. 323–329.
  130. 130. Boerlin H. L. et al. Bipolar depression and antidepressant- induced mania: a naturalistic study // The Journal of clinical psychiatry. – 1998.
  131. 131. Henry C. et al. Antidepressant- induced mania in bipolar patients: identification of risk factors // Journal of Clinical Psychiatry. – 2001. – Vol. 62. – №4. – P. 249–255.
  132. 132. Wirz- Justice A. et al. Chronotherapeutics for Affective Disorders: A Clinician’s Manual for light and Wake therapy // Annals of Clinical Psychiatry. – 2010. – Vol. 22. – №1. – P. 67.
  133. 133. Azeemi S. T. Y. et al. The mechanistic basis of chromotherapy: Current knowledge and future perspectives // Complementary therapies in medicine. – 2019. – Vol. 46. – P. 217–222.
  134. 134. Wehr T. A. Sleep- loss as a possible mediator of diverse causes of mania // The British Journal of Psychiatry. – 1991. – Vol. 159. – №4. – P. 576–578.
  135. 135. Bernardi G. et al. Neural and behavioral correlates of extended training during sleep deprivation in humans: evidence for local, task- specific effects // Journal of neuroscience. – 2015. – Vol. 35. – №11. – P. 4487–4500.
  136. 136. Gujar N. et al. Sleep deprivation amplifies reactivity of brain reward networks, biasing the appraisal of positive emotional experiences // Journal of Neuroscience. – 2011. – Vol. 31. – №12. – P. 4466–4474.
  137. 137. Bosch O. G. et al. Sleep deprivation increases dorsal nexus connectivity to the dorsolateral prefrontal cortex in humans // Proceedings of the National Academy of Sciences. – 2013. – Vol. 110. – №48. – P. 19597–19602.
  138. 138. Bollettini I. et al. Disruption of white matter integrity marks poor antidepressant response in bipolar disorder // Journal of affective disorders. – 2015. – Vol. 174. – P. 233–240.
  139. 139. Benedetti F., Smeraldi E. Neuroimaging and genetics of antidepressant response to sleep deprivation: implications for drug development // Current pharmaceutical design. – 2009. – Vol. 15. – №22. – P. 2637–2649.
  140. 140. Smith G. S. et al. Glucose metabolic response to total sleep deprivation, recovery sleep, and acute antidepressant treatment as functional neuroanatomic correlates of treatment outcome in geriatric depression // The American journal of geriatric psychiatry. – 2002. – Vol. 10. – №5. – P. 561–567.
  141. 141. Ben Simon E. et al. Tired and misconnected: A breakdown of brain modularity following sleep deprivation // Human brain mapping. – 2017. – Vol. 38. – №6. – P. 3300–3314.
  142. 142. Sankar A. et al. A systematic review and meta- analysis of the neural correlates of psychological therapies in major depression // Psychiatry Research: Neuroimaging. – 2018. – Vol. 279. – P. 31–39.
  143. 143. Wu G. R. et al. Opposite subgenual cingulate cortical functional connectivity and metabolic activity patterns in refractory melancholic major depression // Brain imaging and behavior. – 2020. – Vol. 14. – №2. – P. 426–435.
  144. 144. Drevets W. C., Bogers W., Raichle M. E. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism // European Neuropsychopharmacology. – 2002. – Vol. 12. – №6. – P. 527–544.
  145. 145. Tong X. et al. MicroRNA‑598 inhibits the proliferation and invasion of non‑small cell lung cancer cells by directly targeting ZEB2 // Experimental and therapeutic medicine. – 2018. – Vol. 16. – №6. – P. 5417–5423.
  146. 146. Elliott R. et al. The neural basis of mood- congruent processing biases in depression // Archives of general psychiatry. – 2002. – Vol. 59. – №7. – P. 597–604.
  147. 147. Drevets W. C., Price J. L., Furey M. L. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression // Brain structure and function. – 2008. – Vol. 213. – №1–2. – P. 93–118.
  148. 148. Nord C. L. et al. The neural basis of hot and cold cognition in depressed patients, unaffected relatives, and low- risk healthy controls: an fMRI investigation // Journal of Affective Disorders. – 2020.
  149. 149. Rupprechter S. et al. Abnormal reward valuation and event- related connectivity in unmedicated major depressive disorder // Psychological medicine. – 2020. – P. 1–9.
  150. 150. Benedetti F. et al. Neural and genetic correlates of antidepressant response to sleep deprivation: a functional magnetic resonance imaging study of moral valence decision in bipolar depression // Archives of General Psychiatry. – 2007. – Vol. 64. – №2. – P. 179–187.
  151. 151. Benedetti F. et al. Chronotherapeutics in a psychiatric ward // Sleep medicine reviews. – 2007. – Vol. 11. – №6. – P. 509–522.
  152. 152. Boonstra T. W. et al. Effects of sleep deprivation on neural functioning: an integrative review // Cellular and molecular life sciences. – 2007. – Vol. 64. – №7–8. – P. 934.
  153. 153. Parekh P. K. et al. Altered GluA1 (Gria1) function and accumbal synaptic plasticity in the ClockΔ19 model of bipolar mania // Biological psychiatry. – 2018. – Vol. 84. – №11. – P. 817–826.
  154. 154. Chen Q. et al. Neonatal DEX exposure leads to hyperanxious and depressive- like behaviors as well as a persistent reduction of BDNF expression in developmental stages // Biochemical and Biophysical Research Communications. – 2020. – Vol. 527. – №1. – P. 311–316.
  155. 155. Faraguna U. et al. A causal role for brain- derived neurotrophic factor in the homeostatic regulation of sleep // Journal of Neuroscience. – 2008. – Vol. 28. – №15. – P. 4088–4095.
  156. 156. Çınar R. K. et al. Transient changes in inflammatory and oxidative stress markers with total sleep deprivation // Sleep and Biological Rhythms. – 2016. – Vol. 14. – №4. – P. 387–396.
  157. 157. Hoekstra M. M. B. et al. Cold- inducible RNA- binding protein (CIRBP) adjusts clock- gene expression and REM- sleep recovery following sleep deprivation // Elife. – 2019. – Vol. 8. – P. e43400.
  158. 158. Lee S. et al. Involvement of BDNF/ERK signaling in spontaneous recovery from trimethyltin- induced hippocampal neurotoxicity in mice // Brain research bulletin. – 2016. – Vol. 121. – P. 48–58.
  159. 159. Liu W. X. et al. Regulation of glutamate transporter 1 via BDNF- TrkB signaling plays a role in the anti- apoptotic and antidepressant effects of ketamine in chronic unpredictable stress model of depression // Psychopharmacology. – 2016. – Vol. 233. – №3. – P. 405–415.
  160. 160. Björkholm C., Monteggia L. M. BDNF- a key transducer of antidepressant effects // Neuropharmacology. – 2016. – Vol. 102. – P. 72–79.
  161. 161. Amidfar M. et al. Effect of co- administration of memantine and sertraline on the antidepressant- like activity and brain- derived neurotrophic factor (BDNF) levels in the rat brain // Brain Research Bulletin. – 2017. – Vol. 128. – P. 29–33.
  162. 162. Kishi T. et al. Brain- derived neurotrophic factor and major depressive disorder: evidence from meta- analyses // Frontiers in psychiatry. – 2018. – Vol. 8. – P. 308.
  163. 163. Enomoto S. et al. Activated brain- derived neurotrophic factor/TrkB signaling in rat dorsal and ventral hippocampi following 10- day electroconvulsive seizure treatment // Neuroscience Letters. – 2017. – Vol. 660. – P. 45–50.
  164. 164. Eckert A. et al. The link between sleep, stress and BDNF // European Psychiatry. – 2017. – Vol. 41. – №S1. – P. S282- S282.
  165. 165. Li X. et al. Leptin increases expression of 5-HT2B receptors in astrocytes thus enhancing action of fluoxetine on the depressive behavior induced by sleep deprivation // Frontiers in psychiatry. – 2019. – Vol. 9. – P. 734.
  166. 166. Giacobbo B. L. et al. Could BDNF be involved in compensatory mechanisms to maintain cognitive performance despite acute sleep deprivation? An exploratory study // International Journal of Psychophysiology. – 2016. – Vol. 99. – P. 96–102.
  167. 167. Benedetti F. et al. Stem Cell Factor (SCF) is a putative biomarker of antidepressant response // Journal of Neuroimmune Pharmacology. – 2016. – Vol. 11. – №2. – P. 248–258.
  168. 168. Cullen T., Thomas G., Wadley A. Sleep deprivation: Cytokine and neuroendocrine effects on perception of effort // Medicine & Science in Sports & Exercise. – 2020. – Vol. 52. – №4. – P. 909–918.
  169. 169. Porkka- Heiskanen T. et al. Adenosine: a mediator of the sleep- inducing effects of prolonged wakefulness // Science. – 1997. – Vol. 276. – №5316. – P. 1265–1268.
  170. 170. Leenaars C. H. C. et al. Intracerebral adenosine during sleep deprivation: a meta- analysis and new experimental data // Journal of circadian rhythms. – 2018. – Vol. 16.
  171. 171. Basheer R. et al. Sleep deprivation upregulates A1 adenosine receptors in the rat basal forebrain // Neuroreport. – 2007. – Vol. 18. – №18. – P. 1895–1899.
  172. 172. Elmenhorst D. et al. Sleep deprivation increases A1 adenosine receptor density in the rat brain // Brain research. – 2009. – Vol. 1258. – P. 53–58.
  173. 173. Elmenhorst D. et al. Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study // Journal of Neuroscience. – 2007. – Vol. 27. – №9. – P. 2410–2415.
  174. 174. Elmenhorst D. et al. Recovery sleep after extended wakefulness restores elevated A1 adenosine receptor availability in the human brain // Proceedings of the National Academy of Sciences. – 2017. – Vol. 114. – №16. – P. 4243–4248.
  175. 175. Elmenhorst E. M. et al. Cognitive impairments by alcohol and sleep deprivation indicate trait characteristics and a potential role for adenosine A1 receptors // Proceedings of the National Academy of Sciences. – 2018. – Vol. 115. – №31. – P. 8009–8014.
  176. 176. Burnstock G. Purinergic signalling and neurological diseases: an update // CNS & Neurological Disorders- Drug Targets (Formerly Current Drug Targets- CNS & Neurological Disorders). – 2017. – Vol. 16. – №3. – P. 257–265.
  177. 177. Nilsonne G. et al. Intrinsic brain connectivity after partial sleep deprivation in young and older adults: results from the Stockholm Sleepy Brain study // Scientific reports. – 2017. – Vol. 7. – №1. – P. 1–12.
  178. 178. van Calker D. et al. The role of adenosine receptors in mood and anxiety disorders // Journal of neurochemistry. – 2019. – Vol. 151. – №1. – P. 11–27.
  179. 179. Poleszak E. et al. Antidepressant- Like Activity of Typical Antidepressant Drugs in the Forced Swim Test and Tail Suspension Test in Mice Is Augmented by DMPX, an Adenosine A2A Receptor Antagonist // Neurotoxicity research. – 2019. – Vol. 35. – №2. – P. 344–352.
  180. 180. Chennaoui M. et al. Leukocyte expression of type 1 and type 2 purinergic receptors and pro- inflammatory cytokines during total sleep deprivation and/or sleep extension in healthy subjects // Frontiers in Neuroscience. – 2017. – Vol. 11. – P. 240.
  181. 181. Carey L. M., Rice R. J., Prus A. J. The Neurotensin NTS1 Receptor Agonist PD149163 Produces Antidepressant- Like Effects in the Forced Swim Test: Further Support for Neurotensin as a Novel Pharmacologic Strategy for Antidepressant Drugs // Drug Development Research. – 2017. – Vol. 78. – №5. – P. 196–202.
  182. 182. Serchov T. et al. Increased signaling via adenosine A1 receptors, sleep deprivation, imipramine, and ketamine inhibit depressive- like behavior via induction of Homer1a // Neuron. – 2015. – Vol. 87. – №3. – P. 549–562.
  183. 183. Jakobsen J. C. et al. Selective serotonin reuptake inhibitors versus placebo in patients with major depressive disorder. A systematic review with meta- analysis and Trial Sequential Analysis // BMC psychiatry. – 2017. – Vol. 17. – №1. – P. 58.
  184. 184. Ebert D., Berger M. Neurobiological similarities in antidepressant sleep deprivation and psychostimulant use: a psychostimulant theory of antidepressant sleep deprivation // Psychopharmacology. – 1998. – Vol. 140. – №1. – P. 1–10.
  185. 185. Ru Q. et al. Withdrawal from chronic treatment with methamphetamine induces anxiety and depression- like behavior in mice // Psychiatry Research. – 2019. – Vol. 271. – P. 476–483.
  186. 186. Koob G. F. et al. Psychostimulants. – Academic Press, 2020. – Vol. 2.
  187. 187. Gompf H. S., Anaclet C. The neuroanatomy and neurochemistry of sleep- wake control // Current Opinion in Physiology. – 2020. – Vol. 15. – P. 143–151.
  188. 188. Ballesteros- Yáñez I. et al. The role of adenosine receptors in psychostimulant addiction // Frontiers in pharmacology. – 2018. – Vol. 8. – P. 985.
  189. 189. Menon J. M. L. et al. Brain Microdialysate Monoamines in Relation to Circadian Rhythms, Sleep, and Sleep Deprivation- a Systematic Review, Network Meta- analysis, and New Primary Data // Journal of circadian rhythms. – 2019. – Vol. 17.
  190. 190. da Costa Daniele T. M. et al. Effects of exercise on depressive behavior and striatal levels of norepinephrine, serotonin and their metabolites in sleep- deprived mice // Behavioural brain research. – 2017. – Vol. 332. – P. 16–22.
  191. 191. Bellesi M. et al. Region- specific dissociation between cortical noradrenaline levels and the sleep/wake cycle // SleeP. – 2016. – Vol. 39. – №1. – P. 143–154.
  192. 192. Kempadoo K. A. et al. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory // Proceedings of the National Academy of Sciences. – 2016. – Vol. 113. – №51. – P. 14835–14840.
  193. 193. Peever J., Fuller P. M. The Biology of REM sleep // Current Biology. – 2017. – Vol. 27. – №22. – P. R1237–R1248.
  194. 194. Jones B. E. Neuroanatomical, neurochemical, and neurophysiological bases of waking and sleeping // Oxford Textbook of Sleep Disorders. – 2017. – P. 23.
  195. 195. Cirelli C., Tononi G. Effects of sleep and waking on the synaptic ultrastructure // Philosophical Transactions of the Royal Society B. – 2020. – Vol. 375. – №1799. – P. 20190235.
  196. 196. Tomioka H. et al. Studies on Tryptophan Metabolites in Patients of Major Monopolar Depression // Melatonin. – Intech Open, 2020.
  197. 197. Kohtala S. et al. Rapid- acting antidepressants: Shared neuropharmacological mechanisms. – 2019; Léger D. et al. Slow- wave sleep: From the cell to the clinic // Sleep medicine reviews. – 2018. – Vol. 41. – P. 113–132.
  198. 198. Henter I. D., de Sousa R. T., Zarate Jr C. A. Glutamatergic modulators in depression // Harvard review of psychiatry. – 2018. – Vol. 26. – №6. – P. 307.
  199. 199. Haroon E., Miller A. H., Sanacora G. Inflammation, glutamate, and glia: a trio of trouble in mood disorders // Neuropsychopharmacology. – 2017. – Vol. 42. – №1. – P. 193–215.
  200. 200. Cruceanu C. et al. Dysregulation of the glutamatergic receptors after antidepressant treatment in human neural progenitor cells // Molecular Psychiatry. – 2017. – Vol. 22. – №9. – P. 1228–1229.
  201. 201. Stafford J. et al. AMPA receptor translocation and phosphorylation are induced by transcranial direct current stimulation in rats // Neurobiology of Learning and Memory. – 2018. – Vol. 150. – P. 36–41.
  202. 202. Ceprian M., Fulton D. Glial cell AMPA receptors in nervous system health, injury and disease // International journal of molecular sciences. – 2019. – Vol. 20. – №10. – P. 2450.
  203. 203. Holz A. et al. Enhanced mGlu5 signaling in excitatory neurons promotes rapid antidepressant effects via AMPA receptor activation // Neuron. – 2019. – Vol. 104. – №2. – P. 338–352.
  204. 204. van Calker D. et al. Recent insights into antidepressant therapy: distinct pathways and potential common mechanisms in the treatment of depressive syndromes // Neuroscience & Biobehavioral Reviews. – 2018. – Vol. 88. – P. 63–72.
  205. 205. Pazini F. L. et al. Creatine, similar to ketamine, counteracts depressive- like behavior induced by corticosterone via PI3K/Akt/mTOR pathway // Molecular neurobiology. – 2016. – Vol. 53. – №10. – P. 6818–6834.
  206. 206. Hashimoto K. Rapid antidepressant activity of ketamine beyond NMDA receptor // The NMDA receptors. – Humana Press, Cham, 2017. – P. 69–81.
  207. 207. Ficek J. et al. Molecular profile of dissociative drug ketamine in relation to its rapid antidepressant action // BMC genomics. – 2016. – Vol. 17. – №1. – P. 1–11.
  208. 208. S Wohleb E. et al. Molecular and cellular mechanisms of Rapid- acting antidepressants ketamine and scopolamine // Current neuropharmacology. – 2017. – Vol. 15. – №1. – P. 11–20.
  209. 209. Borrie S. C. et al. Cognitive dysfunctions in intellectual disabilities: the contributions of the Ras- MAPK and PI3K-AKT-mTOR pathways // Annual review of genomics and human genetics. – 2017. – Vol. 18. – P. 115–142.
  210. 210. Chaki S., Koike H., Fukumoto K. Targeting of Metabotropic Glutamate Receptors for the Development of Novel Antidepressants // Chronic Stress. – 2019. – Vol. 3. – P. 2470547019837712.
  211. 211. Abdallah C. G. et al. Metabotropic glutamate receptor 5 and glutamate involvement in major depressive disorder: a multimodal imaging study // Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. – 2017. – Vol. 2. – №5. – P. 449–456.
  212. 212. Lener M. S. et al. Glutamate and gamma- aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine // Biological psychiatry. – 2017. – Vol. 81. – №10. – P. 886–897.
  213. 213. Nasehi M. et al. The fluctuations of metabotropic glutamate receptor subtype 5 (mGluR5) in the Amygdala in fear conditioning model of male Wistar rats following sleep deprivation, reverse circadian and napping // Journal Pre- proofs. – 2020.
  214. 214. Weigend S. et al. Dynamic changes in cerebral and peripheral markers of glutamatergic signaling across the human sleep- wake cycle // SleeP. – 2019. – Vol. 42. – №11. – P. zsz161.
  215. 215. Elmenhorst D. et al. Circadian variation of metabotropic glutamate receptor 5 availability in the rat brain // Journal of sleep research. – 2016. – Vol. 25. – №6. – P. 754–761.

Комментарии(0)

При добавлении комментария укажите:
  • степень актуальности публикуемого материала;
  • общую оценку (оригинальность и актуальность темы, полнота, глубина, всесторонность раскрытия темы, логичность, связность, доказательность, структурная упорядоченность, характер и достоверность примеров, иллюстративного материала, убедительность выводов);
  • недостатки, недочеты;
  • вопросы и пожелания Автору.