Список публикаций по ключевому слову: «интерполяция»


[01.00.00] Физико-математические науки

Дата публикации: 28.02.2017 г.
Оцените материал Средняя оценка: 5 (Всего: 1)
Зеленый Андрей Сергеевич , магистрант
Бунякин Алексей Вадимович , канд. физ.-мат. наук , преподаватель
ФГБОУ ВО «Кубанский государственный университет» , Краснодарский край

«О методе аппроксимации плоской замкнутой кривой с острой кромкой»

Скачать статью

В статье отмечено, что первоначально проблема интерполяции кривой на плоскости возникла в задаче обтекания профиля крыла набегающим потоком жидкости (газа) и в последующем расчете потенциала скоростей методом граничных элементов. Однако, как оказалось, практическая значимость данного метода далеко этим не ограничивается. Данный алгоритм может быть с успехом применен в любой задаче, в которой требуется задание дискретного набора точек, описывающих произвольную кривую: метод базисных потенциалов в решении краевых задач, обтекание профилей с острой кромкой (профиль крыла, капля жидкости и т. п.), аналитическое выражение, для которых получить порой очень сложно, создание шрифтов и логотипов, а также в некоторых задачах архитектуры и швейной промышленности.

Дата публикации: 23.11.2016 г.
Оцените материал Средняя оценка: 0 (Всего: 0)
Каменева Галина Анатольевна , канд. пед. наук , доцент
Каменева Анастасия Евгеньевна , магистрант
Горбунова Алина Викторовна , студентка
ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова» , Челябинская обл

«Сравнительный анализ интерполяционных сплайнов 2, 3 и 4 степени»

Скачать статью

В статье выполняется построение интерполяционных сплайнов различной степени, а также производится сравнение их свойств и характеристик. Сплайн рассматривается как функция, область определения которой разбита на конечное число отрезков, на каждом из которых сплайн совпадает с некоторым полиномом.

Технические науки (электромеханика, приборостроение, машиностроение, металлургия и др.)

Дата публикации: 12.02.2015 г.
Оцените материал Средняя оценка: 0 (Всего: 0)
Подгорный Юрий Ильич , д-р техн. наук , профессор, заведующий кафедрой
Максимчук Ольга Владимировна , канд. техн. наук , доцент
Стройнова Галина Петровна , старший преподаватель
Новосибирский технологический институт (филиал) ФГБОУ ВО «Московский государственный университет дизайна и технологии» , Новосибирская обл

«Определение погрешностей законов движения цикловых механизмов»

Скачать статью

При кинематическом анализе кулачковых механизмов, профили которых заданы таблично или получены в результате замеров методом малых делений, возникают системные искажения кинематических характеристик, которые в свою очередь вызывают осцилляции на графиках скоростей и ускорений. В этом случае для определения аналитического закона движения ведомого звена необходимо проводить «сглаживание» полученных значений

Физико-математические науки

Дата публикации: 01.11.2016 г.
Оцените материал Средняя оценка: 0 (Всего: 0)
Каменева Анастасия Евгеньевна , магистрант
Горбунова Алина Викторовна , студентка
ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова» , Челябинская обл

«Построение интерполяционного сплайна произвольной степени»

Скачать статью

В данной статье рассматривается понятие интерполяционного полинома произвольной степени и способы его построения.

Технические науки

Дата публикации: 15.06.2016 г.
Оцените материал Средняя оценка: 0 (Всего: 0)
Каменева Анастасия Евгеньевна , магистрант
Горбунова Алина Викторовна , студентка
ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова» , Челябинская обл

«Некоторые методы интерполяции изображений»

Скачать статью

В данной статье авторами рассматривается понятие «интерполяция» с точки зрения математики, а также объясняется ее применение в сфере обработки изображений.

Дата публикации: 27.04.2017 г.
Оцените материал Средняя оценка: 0 (Всего: 0)
Пахнутов Игорь Александрович , канд. физ.-мат. наук, старший научный сотрудник , доцент
ФГБОУ ВО «Калининградский государственный технический университет» , Калининградская обл

«Многомерная интерполяция»

Скачать статью

В статье рассматриваются итерационные методы интерполяции в виде однотипных рекурсивных процедур, определяемых некоторыми простыми (не обязательно действительно значными) функциями (базис интерполяции). Функции достаточно произвольны и определяются лишь потребностями пользователя. Рассматриваемая конструкция интерполянтов достаточно универсальна: ее можно использовать в произвольных векторных пространствах со скалярным произведением без ограничения размерности (в конечномерных евклидовых пространствах, так и в гильбертовых). Выбор базиса интерполяции также достаточно произволен, поскольку он определяется весьма слабыми ограничениями. В результате рассматриваемая многомерная интерполяция включает в себя как традиционную полиномиальную (совпадающую с лагранжевой на действительной числовой прямой), так и рациональную, степенную, показательную и др. Приведенный итеративный процесс, в сущности, довольно гибок и позволяет в одной процедуре менять тип интерполяции в зависимости от номера узла интерполяции в заданном кортеже. Линейные варианты базиса интерполяции (возможно, и некоторые нелинейные) позволяют выполнять интерполяцию в некоммутативных пространствах, например, на пространствах невырожденных матриц, при этом интерполируемые данные могут также быть элементами соответствующих векторных пространств над произвольным числовым полем. В качестве иллюстрации приведены примеры интерполирования на плоскости, в сепарабельном гильбертовом пространстве и пространстве квадратных матриц с векторнозначными исходными данными.